
  

Appendix A – Response statistics 
For convenience of the reader, the equation of motion for the linearized system consisting of the MDOF 
shear-type buildings connected by linear viscous dampers equivalent to the nonlinear dampers is 
reported again as follows: 

( ) ( ) ( ) ( ) ( )eq
gdt t t u t+ + + = −MU C C U KU MR  
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The Kanai-Tajimi process describing the seismic input ( )gu t  can be obtained by taking a white noise 
processes ( )w t  with PSD equal to S0 and passing it through a filter with frequency KTω  and damping 
factor KTξ . The following equations can be used to evaluate the ground acceleration process: 
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In order to derive the statistics of the response of the system to the stochastic input model considered, 
it is convenient to introduce the following state vector: 
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and the equation of motion of the coupled system is expressed in the first-order state space form: 

( ) ( ) ( ) ( )s wt t t w t= ⋅ + ⋅z A z B
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where: 
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where ( ) ( )n m n mx+ +0  is a (n+m) x (n+m) matrix of zeros, ( ) 1n m x+0  = (n+m) x 1 vector of zeros, and 
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The stochastic response can be obtained by solving the differential equation of the covariance matrix 
( )tZZQ , whose time-varying elements are the second order moments ( ) ( )i jE Z t Z t ⋅   relative to the 

state vector Z : 

( ) ( ) ( ) ( ) ( ) ( )T
s st t t t t t= ⋅ + ⋅ +zz zz zzQ A Q Q A G
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Here, matrix ( )tG  has all elements equal to zero, except for ( ) ( ) ( ) 02 2,2 2 2n m n m t Sπ⋅ + + ⋅ + + = ⋅ ⋅G . Matrix 

( )tzzQ  contains information about the statistics of the displacement and velocity response. 

Since the stationary response is of interest, ( )tZZQ =0, and Eqn.(A7) reduces to: ( )( )1 eq
ds t−− ⋅ +M C C  

( ) ( ) ( )T
s st t t= + +ZZ ZZ0 A Q Q A G

 
(A8)

 
It is noteworthy that the term of matrix ( )s tA  is function of the response covariance, and thus an 
iterative scheme is required to solve Eq. (A8). Obviously, in the case of linear dampers, no iterations 
are required, and the problem solution could alternatively be found in the frequency domain (see e.g. 
Gioiella et al. 2018). 
Matrix ZZQ  contains the statistics of the displacement and velocity response at the various floors. The 
equivalence between the linear and nonlinear FVDs is based on the knowledge of the standard 
deviation of the relative velocities at the various floors, 

j
σ∆U , for j=1,2,..,n. To determine these, the 

linear operator ∆UD   is introduced to relate the relative velocities ∆U  to Z  through the expression 

∆∆ = UU D Z . The values of 
j

σ∆U  can be found along the diagonal of the following covariance matrix: 
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The covariance matrix of the absolute accelerations of the system, collected in the vector ( )ta , is 
obtained as: 

( ) ( ) ( ) ( )Tt t t t= ⋅ ⋅aa a zz aQ D Q D
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where matrix ( )taD , defined as: 
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is such that ( ) ( ) ( ) ( ) ( )gt t U t t t= + ⋅ = ⋅AA U r D Z  . 

The covariance matrix of the damper forces, collected in the vector ( )d tF , is obtained as: 

( ) ( ) ( ) ( )Tt t t t= ⋅ ⋅
FFF F zzQ D Q D

 
(A12)

 
where matrix ( )tFD  is defined as: 
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( ) ( )( ) ( ) ( ) 1 ( ) 1 ( ) 1 ( ) 1
eq

n m x n m n m x n m x n m x n m xdst t+ + + + + +
 =
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Appendix B – Validation of linearization approach via Monte Carlo simulation 
 
The accuracy of the results obtained through the proposed analysis technique is evaluated based on the 
comparison with Monte Carlo Simulation (MCS) results. The MCS estimates are obtained by 
considering a set of 200 ground motion records compatible with the with the Kanai-Tajimi input model 
(Kanai 1957, Tajimi 1960) and generated by using the Spectral representation method (Shinozuka and 
Deodatis 1991). 
The case of buildings connected by a single nonlinear damper (α = 0.3 and optimal properties as 
reported in Table 2) at the 4th floor is considered, and the relevant results are shown in Figure B1, 
where the stationary response evaluated by solving the Lyapunov equation and applying the stochastic 
linearization technique is compared to the stationary response evaluated via MCS. 
Comparison is made in terms of mean square response of the displacement of building B at floor 4 
(Figure B1a), and of the damper force (Figure B1b). 
It is observed that the stochastic linearization technique provides very accurate response estimates 
despite the high level of nonlinearity of the dampers. 
 

  

Figure B1. Comparison of stationary mean square response according to analytical formulation and 
MCS in terms of a) displacements of building A and B at floor 4, b) damper force at floor 4. Case with 
one single damper at the 4th floor with α = 0.3 and optimal properties. 
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