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APPENDIX

Lemma 1. The definite integral of power of sin on the interval [0, π] is given by

Jp =

∫ π

0
(sinx)pdx =

√
πΓ
(
1+p
2

)
Γ
(
1 + p

2

) (p ∈ Z+),

where Γ(x) =
∫∞
0 exp(−t)tx−1dt is the gamma function.

PROOF.

Jp =

∫ π

0
(sinx)pdx

=
(
−(sinx)p−1 cosx

) ∣∣∣∣π
0

+ (p− 1)

∫ π

0
(sinx)p−2(cosx)2dx

= 0 + (p− 1)

∫ π

0
(sinx)p−2dx− (p− 1)

∫ π

0
(sinx)pdx

= (p− 1)Jp−2 − (p− 1)Jp

Therefore, Jp = p−1
p Jp−2.

Using the above iteration relationship and the property of gamma function Γ(x+ 1) = xΓ(x), we write
Jp using gamma function:

• When p is an even integer:

Jp =
p− 1

p

p− 3

p− 2
· · · 1

2
J0

=
(p− 1)/2

p/2

(p− 3)/2

(p− 2)/2
· · · 1/2

2/2
J0

=
Γ
(
1+p
2

)
/Γ
(
1
2

)
Γ
(p
2 + 1

)
/Γ (1)

J0

Plugging in the base case J0 = π and Γ
(
1
2

)
=
√
π, Γ(1) = 1, we prove that

Jp =

√
πΓ
(
1+p
2

)
Γ
(
1 + p

2

) (p ∈ Z+, p is even)
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• When p is an odd integer:

Jp =
p− 1

p

p− 3

p− 2
· · · 2

3
J1

=
(p− 1)/2

p/2

(p− 3)/2

(p− 2)/2
· · · 2/2

3/2
J1

=
Γ
(
1+p
2

)
/Γ (1)

Γ
(p
2 + 1

)
/Γ
(
3
2

)J1
Plugging in the base case J1 = 2 and Γ

(
3
2

)
=
√
π
2 , Γ(1) = 1, we prove that

Jp =

√
πΓ
(
1+p
2

)
Γ
(
1 + p

2

) (p ∈ Z+, p is odd)

Theorem 1. When the corpus size and vocabulary size are infinite (i.e., |D| → ∞ and |V | → ∞) and
all word vectors and document vectors are assumed to be unit vectors, generalizing the relationship of
proportionality assumed in Equations (2), (4), (7) and (9), to the continuous cases results in the vMF
distribution with the corresponding prior vector as the mean direction and constant 1 as the concentration
parameter, i.e.,

lim
|V |→∞

p(wi | CL(wi, d)) = vMFp(uwi , 1) = cp(1) exp(v>wi
uwi) (16)

lim
|V |→∞

p(wi | d) = vMFp(d, 1) = cp(1) exp(v>wi
d) (17)

lim
|V |→∞

p(wj | wi) = vMFp(uwi , 1) = cp(1) exp(v>wj
uwi) (18)

lim
|D|→∞

p(d | wi) = vMFp(uwi , 1) = cp(1) exp(d>uwi) (19)

PROOF. We give the proof for Equation (18). The proof for Equations (16), (17) and (19) can be derived
similarly.

We generalize the relationship proportionality p(wj | wi) ∝ exp(u>wi
vwj ) in Equation (7) to the

continuous case and obtain the following probability dense distribution:

lim
|V |→∞

p(wj | wi) =
exp(u>wi

vwj )∫
Sp−1 exp(u>wi

vw′)dvw′
,

exp(u>wi
vwj )

Z
, (20)

where we denote the integral in the denominator as Z, and our goal becomes to prove the following
equality1

Z =
1

cp(1)
.

To evaluate the integral Z, we make the transformation to polar coordinates. Let t = Qvw′ , where
Q ∈ Rp×p is an orthogonal transformation so that dt = dvw′ . Moreover, let the first row of Q be uwi so

1 An easy way to see this holds true (without formal proof) is to use the fact that the probability density function of vMF distribution integrates to 1 over the
entire sphere.
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that t1 = u>wi
vw′ . Then we use (r, θ1, . . . , θp−1) to represent the polar coordinates of t where r = 1 and

cos θ1 = u>wi
vw′ . The transformation from Euclidean coordinates to polar coordinates is given by (Sra,

2007) via computing the determinant of the Jacobian matrix for the coordinate transformation:

dt = rp−1
p∏
j=2

(sin θj−1)
p−jdθj−1.

Then

Z =

∫ π

0
exp(cos θ1)(sin θ1)

p−2dθ1

p−1∏
j=3

∫ π

0
(sin θj−1)

p−jdθj−1

∫ 2π

0
dθj−1.

By Lemma 1, we have

p−1∏
j=3

∫ π

0
(sin θj−1)

p−jdθj−1 = π
p−3
2

Γ
(
p−2
2

)
Γ
(
p−3
2

)
· · ·Γ (1)

Γ
(
p−1
2

)
Γ
(
p−2
2

)
· · ·Γ

(
3
2

) =
π

p−3
2

Γ
(
p−1
2

) .
Then

Z =

∫ π

0
exp(cos θ1)(sin θ1)

p−2dθ1 ·
π

p−3
2

Γ
(
p−1
2

) · 2π
=

2π
p−1
2

Γ
(
p−1
2

) ∫ π

0
exp(cos θ1)(sin θ1)

p−2dθ1.

According to Definition 4, the integral term of Z above can be expressed with Ip/2−1(1) as:

∫ π

0
exp(cos θ1)(sin θ1)

p−2dθ1 =
Γ
(
p−1
2

)
Γ
(
1
2

)
21−p/2

Ip/2−1(1).

Therefore, with the fact that Γ
(
1
2

)
=
√
π,

Z =
2π

p−1
2

Γ
(
p−1
2

) Γ
(
p−1
2

)
Γ
(
1
2

)
21−p/2

Ip/2−1(1) = (2π)p/2Ip/2−1(1).

Plugging Z back to Equation (20), we finally arrive that

lim
|V |→∞

p(wj | wi) =
1

(2π)p/2Ip/2−1(1)
exp(v>wj

uwi) = vMFp(uwi , 1).

Lemma 2. Let X be a set of n unit vectors drawn independently from the vMF distribution vMFp(µ, κ),
i.e.,

X = {xi ∈ Sp−1 | xi ∼ vMFp(µ, κ), 1 ≤ i ≤ n},
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The maximum likelihood estimate for parameter µ is given by the normalized sum of the n vectors, i.e.,

µ̂ =

∑n
i=1 xi

‖
∑n

i=1 xi‖
.

PROOF. The likelihood of X is

P (X | µ, κ) =
n∏
i=1

vMFp(µ, κ) =
n∏
i=1

cp(κ) exp(κµ>xi).

The log-likelihood is
logP (X | µ, κ) = n log cp(κ) + κµ>s,

where s =
∑n

i=1 xi.

Since ‖µ‖ = 1, we introduce a Lagrange multiplier η to account for the constraint and maximize the
Lagrangian objective function below:

L(µ, κ, η;X ) = n log cp(κ) + κµ>s+ η(1− µ>µ).

Then we compute the partial derivative of L(µ, κ, η;X ) with regard to µ:

∂L(µ, κ, η;X )

∂µ
= κs− 2ηµ.

After setting the partial derivative to be zero, we obtain

µ̂ =
κ̂

2η̂
s. (21)

Plugging Equation (21) into the constraint µ>µ = 1, we have

η̂ =
κ̂

2
‖s‖. (22)

Substituting Equation (22) into Equation (21), we finally arrive at the maximum likelihood estimation of
the mean direction:

µ̂ =
s

‖s‖
=

∑n
i=1 xi

‖
∑n

i=1 xi‖
.
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