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Electronic Supplementary Material 1:  

Detailed derivation of the equations used to substitute the AVE and the correlation 

between the latent variables in the essentially tau-equivalent Model 

Note: The numbering of the equations, tables and figures corresponds to the numbering in 

the article. 

The original Fornell-Larcker criterion 

The formal definition of the AVE of a given latent variable X with standardized 

indicators can be seen in Equation (1). 
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where 2

.x i  is the squared loading of indicator .x i  on the latent variable X and xK  is 

the number of indicators associated with X. As seen in Equation (2), the Fornell-Larcker 

criterion and thus the requirements for distinctiveness between two latent variables X and Y 

are fully met if the AVE of X and Y are both higher than the variance X and Y share with 

each other.  
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where 
2

xy  is the squared correlation between X and Y. Figure 0a gives an example 

of two latent variables with three manifest indicators each.  

 

 

Figure 0a. Example of two latent variables with three manifest indicators each. 

 

Substitute for the AVE in the Essentially Tau-Equivalent Model 

According to Sijtsma (2009, p.107, also see McNeish, 2018), “probably no other 

statistic has been reported more often as a quality indicator of test scores than Cronbach’s 

(1951) alpha coefficient”. If the items of an instrument are essentially tau-equivalent, 

Cronbach’s alpha is true indicator of that instrument’s reliability (e.g., Graham, 2006; Miller, 

1995). The formula for standardized Cronbach’s alpha (which in the essentially tau-
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equivalent model is identical to Cronbach’s alpha, but easier to calculate and, more 

importantly, based on the correlation instead of the covariance) is as follows: 
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where x is the standardized Cronbach’s alpha of all indicators associated with the 

latent variable X and ir  is the interitem correlation of indicator i  with all other indicators 

associated with X. What is clear from Equation (3) is that standardized Cronbach’s alpha is 

simply a function of the average interitem correlation of all indicators associated with a given 

variable and the number of indicators. It is by no means a test for the internal structure. In 

fact, the assumption of essential tau-equivalence requires that the measurement instrument is 

homogeneous and unidimensional. Such an essentially tau-equivalent model is shown in the 

left part of Table 0. We will use this example throughout the electronic supplementary 

material. As we will discuss subsequently, in the more realistic congeneric model Cronbach’s 

alpha generally underestimates the reliability of the measurement instrument. Alternatives 

that are more appropriate are readily available. However, as shown by Hogan, Benjamin, and 

Brezinski (2000), and most recently McNeish (2018), none of these more appropriate 

alternatives are actually reported, the overwhelming majority of studies only reports 

Cronbach’s alpha. Since the manifest Fornell-Larcker criterion is specifically designed to 

estimate distinctiveness based on information most likely reported in a given study, all of the 

calculations that follow are based on Cronbach’s alpha as well.  
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Table 0 

Intercorrelation matrices for two sets of items with identical Cronbach’s alpha 

 x1 x2 x3   y1 y2 y3 

x1 -    y1 -   

x2 .3 -   y2 .7 -  

x3 .3 .3 -  y3 .1 .1 - 

average interitem correlation ri = .3   average interitem correlation ri = .3 

Cronbach’s alpha = .56  Cronbach’s alpha = .56 

Note. This table is inspired from Cortina, 1993, p. 100. 

In the essentially tau-equivalent model, the average loading of all indicators 

associated with a variable 
.x i

xK


  is equivalent to the square root of the average manifest 

interitem correlation of these indicators
i

x

r

K


  (John & Benet-Martinez, 2000, p.345; John 

& Soto, 2009, p.486). 
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Moreover, given essential tau-equivalence, all .x i  are equal, thus, the squared 

average loading 
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is identical to the average squared loading 
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As shown in Equation (3) standardized Cronbach’s alpha is a function of the average 

interitem correlation of all indicators and the number of indicators. Equation (3) may thus be 

rearranged to give  
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Thus, the standardized Cronbach’s alpha and the number of items are sufficient to 

calculate the AVE. 
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Substitute for the Correlation between the Latent Variables in the Essentially 

Tau-Equivalent Model 

Again, the Fornell-Larcker criterion was developed to assess distinctiveness between 

latent variables. However, many papers only report the correlation matrix between the 

composite scores (i.e. the summed scores or mean scores), not between the latent ones. 

Unlike correlations between latent variables, correlations between manifest variables do not 

take measurement error into account. This measurement error in manifest variables is likely 

to mask the true correlation between the variables, resulting in an attenuated correlation (e.g., 

Block, 1963). This means correlations between manifest variables are generally lower than 

correlations between their latent counterparts (Farrell, 2010; Grewal, Cote, & Baumgartner, 

2004; Lord & Novick, 1974, p. 68; Nunnally, 1978, p. 237). To account for the measurement 

error in manifest correlations, one can “correct” for this attenuation as shown in Equation(4b)   

 𝜑𝑥𝑦  = 𝑟𝑥�̂� = 
𝑟𝑥𝑦

√𝑟𝑥𝑥∗√𝑟𝑦𝑦
       (4b) 
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where 𝑟𝑥�̂�  is the “corrected” (“double corrected”, to be more precise) correlation 

between the two composite scores of X and Y, 
xyr  is the manifest correlation between the two 

composite scores of X and Y, and xxr and 
yyr are the reliability of X and Y, respectively (e.g., 

Bedeian, Day, & Kelloway, 1997; Nunnally, 1978, p. 219; also see Spearman, 1904). As 

discussed previously, in the essentially tau-equivalent model, Cronbach’s alpha is a true 

measure of reliability (e.g., Novick & Lewis, 1967, Theorem 3.1; Raykov, 1997; Sijtsma, 

2009, p.111). Therefore,  

𝜑𝑥𝑦  = 𝑟𝑥�̂� = 
𝑟𝑥𝑦

√∝𝑥∗√∝𝑦
          (5) 

This shows that in the essentially tau-equivalent model, distinctiveness (as understood 

by Fornell and Larcker) can indeed be calculated using nothing but Cronbach’s alpha and the 

manifest correlation between the composite scores.  
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Substitute for the AVE in the Congeneric Model 

Now we will turn to the congeneric model, which is much more realistic for empirical 

data (e.g. Graham, 2006; Miller, 1995), but at the same time fuzzier when it comes to 

deriving the equations. When the assumption of essential tau-equivalence is violated, 

Cronbach’s alpha will underestimate the reliability of the measurement instrument and 

therewith its AVE (Raykov, 1997). Consider again the example given in Table 0: On the left 

part the data are essentially tau-equivalent. Thus, following Equation (3b), the loadings .1x  – 

.3x  are all .55 and therefore, as shown in Equation (1), xAVE  is .30. However, for the right 

part of Table 1, the associated loadings 
.1y  – 

.3y are .84; .84; .12, with 
yAVE resulting in .48, 

whereas, based on Cronbach’s alpha and given Equation (4), we would again estimate the 

yAVE  to be .30. 

As can be seen in Figure 0b, while the Cronbach’s alpha coefficient stays the same, 

the AVE increases as a function of the variability of these loadings (and thus the variability of 

the underlying intercorrelation matrix; see Raykov, 1997 for an in-depth analysis of the 

conditions under which Cronbach’ alpha underestimates reliability).  
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Figure 0b. Calculated AVE as a function of the variability of loadings for a variable with 3 

manifest indicators. The dotted line represents the correct calculation of the AVE as shown in 

Equation (1), whereas the solid line represents the AVE calculated using Cronbach’s alpha as 

shown in Equation (4) and only viable in cases of essential tau-equivalence. 

 

Therefore, we cannot assume Equations (3b), (3c), and (4) to be true for empirical 

data, which seldom meet the criteria of the essentially tau-equivalent model.  

 In the congeneric model, 

2

.x i

xK

 
  
 


 approximates 

2

.x i

xK


 while always resulting in 

lower estimates, changing Equation (3c) to  
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Moreover, when the data are not essentially tau-equivalent, the square root of the 

average manifest interitem correlation of the indicators associated with a given variable is not 

equivalent to the average loading of all indicators associated with that variable. For the right 

part of Table 1, the average loading of the indicators 
.1y  – 

.3y  is .60, whereas the square 

root of the average manifest interitem correlation of the indicators 
.1y

 - 
.3y

 is .55, changing 

Equation (3b) to  
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,         (6c) 

with stronger deviations for stronger violations of essential tau-equivalence. However, 

even though 
i

x

r

K


 might vary from 

.x i

xK


,   

i

x

r

K


 is always lower than 

2

.x i

xK


 (Raykov, 

1997), resulting in Inequality (6d). 
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Given Equation (3d), the AVE can be approximated (while always resulting in lower 

estimates) using nothing but the standardized Cronbach’s alpha and the number of items  
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     (6e) 

Since we usually do not know whether data are essentially tau-equivalent or not, or to 

what degree they violate the assumption of essential tau-equivalence, especially when we 

have no access to raw data, we generalize inequality (6e) to  

x xAVE AVE        (6f) 
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where xAVE  is the average variance extracted of a given X using nothing but the 

standardized Cronbach’s alpha coefficient and the number of items associated with the given 

X and x xAVE AVE holds if and only if all indicators are essentially tau-equivalent. 

However, according to Raykov (1997, p. 347, also see Raykov & Marcoulides, 2017), 

Cronbach’s alpha still “represents a "good" measure of composite reliability [AVE] at the 

population level, in particular with other than short scales.”  

Substitute for the Correlation between the Latent Variables in the Congeneric 

Model 

Again, in the congeneric model, Cronbach’s alpha somewhat underestimates the 

reliability of a given instrument, resulting in an underestimation of its αAVE. By the same 

token, using Cronbach’s alpha in the congeneric model to “double correct” the correlation 

between the manifest composite scores as shown in Equation (4b) would result in an 

overestimation of the latent correlation (e.g., Muchinsky, 1996), changing Equation (5) to  

*

xy

xy

x y

r


 
         (6g) 

Using Inequality (6g) to assess distinctiveness thus results in a higher probability of 

type 1 errors, meaning the probability that one “detects” a violation of the Fornell-Larcker 

criterion (and thus a lack of distinctiveness) where there is none increases. Not using any 

correction however, leads to a high probability of type 2 errors, meaning one falsely assumes 

distinctiveness when indeed the Fornell-Larcker criterion is violated (see Block, 1963 for a 

related argument). As a consequence, we suggest also correcting for only the lower reliability 

(i.e. for the component with the broader bandwidth; “single correction”). This “single 

correction” procedure with only the lower Cronbach’s alpha value will still underestimate the 

true latent correlation between X and Y and thus there is still a certain probability of type 2 



DISTINCTIVENESS IN MULTIDIMENSIONAL INSTRUMENTS 11 

  

 

 

 

errors, but a much lower one then without any correction (e.g. Hakstian, Schroeder, & 

Rogers, 1989).  

min

xy

xy
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where min  is the lower reliability of the two components X and Y. Taken together, in 

the congeneric model, distinctiveness between two variables can be approximated by using 

Cronbach’s alpha and the manifest correlation between the composite scores.  

2

X xyAVE  which is approximated by 
min

*( )

xyx

x x x x

r

K K



  


  
and   

2

y xyAVE  which is approximated by 
min

*( )

y xy

y y y y

r

K K



  


  
 (7) 

  



DISTINCTIVENESS IN MULTIDIMENSIONAL INSTRUMENTS 12 

  

 

 

 

References 

Bedeian, A. G., Day, D. V., & Kelloway, E. K. (1997). Correcting for measurement error 

attenuation in structural equation models: Some important reminders. Educational 

and Psychological Measurement, 57(5), 785-799. doi: 

10.1177/0013164497057005004 

Block, J. (1963). The equivalence of measures and the correction for attenuation. Psychological 

Bulletin, 60, 152-156. doi: 10.1037/h0041811 

Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16, 

297-334. 

Farrell, A. M. (2010). Insufficient discriminant validity: a comment on Bove, Pervan, Beatty, 

and Shiu (2009). Journal of Business Research, 63, 324-327. doi: 

10.1016/j.jbusres.2009.05.003 

Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable 

variables and measurement error. Journal of Marketing Research, 18, 39-50. doi: 

10.2307/3151312 

Graham, J. M. (2006). Congeneric and (essentially) tau-equivalent estimates of score reliability 

– What they are and how to use them. Educational and Psychological Measurement, 

66 (6), 930-944. doi: 10.1177/0013164406288165 

Grewal R., Cote, J. A., & Baumgartner, H. (2004). Multicollinearity and measurement error in 

structural equation models: implications for theory testing. Marketing Science, 23(4), 

519-29. doi: 10.1287/mksc.1040.0070 

Hakstian, A. R., Schroeder, M. L., & Rogers, W. T. (1989). Inferential theory for partially 

disattenuated correlation coefficients. Psychometrika, 54, 397-407. doi: 

10.1007/BF02294625  



DISTINCTIVENESS IN MULTIDIMENSIONAL INSTRUMENTS 13 

  

 

 

 

Hogan, T. P., Benjamin, A., & Brezinski, K. L. (2000). Reliability methods: A note on the 

frequency of use of various types. Educational and Psychological Measurement, 60, 

523-531. doi: 10.1177/00131640021970691 

John, O. P., & Benet-Martínez, V. (2000). Measurement, scale construction, and reliability. In 

H.T. Reis and C.M. Judd (Eds.), Handbook of research methods in social and 

personality psychology (pp.339-369). New York: Cambridge University Press. 

John, O. P., & Soto, C. J. (2007). The importance of being valid: Reliability and the process of 

construct validation. In Robins, R. W., Fraley, R. C., & Krueger, R. F. (Eds.), 

Handbook of research methods in personality psychology (pp. 461-494). New York: 

Guilford. 

Lord, F. M., & Novick, M. R. (1974). Statistical theories of mental test scores. Reading. MA: 

Addison Wesley. 

McNeish, D. (2018). T Thanks coefficient alpha, we’ll take it from here. Psychological 

Methods, 23, 412 - 433. doi: 10.1037/met0000144  

Miller, M. B. (1995). Coefficient alpha: A basic introduction from the perspectives of classical 

test theory and structural equation modeling. Structural Equation Modeling, 2(3), 

255-273. doi: 10.1080/10705519509540013 

Muchinsky, P. M. (1996). The correction for attenuation. Educational and Psychological 

Measurement, 56(1), 63-75. doi: 10.1177/0013164496056001004 

Novick, M. R., & Lewis, C. (1967). Coefficient alpha and the reliability of composite 

measurements. Psychometrika, 32(1), 1–13. doi:10.1007/BF02289400 

Nunnally, J. (1978). Psychometric theory. New York: McGraw-Hill. 

Raykov, T. (1997). Scale reliability, Cronbach’s coefficient alpha, and violations of essential 

tau equivalence with fixed congeneric components. Multivariate Behavioral 

Research, 32, 329 - 353. doi: 10.1207/s15327906mbr3204_2 



DISTINCTIVENESS IN MULTIDIMENSIONAL INSTRUMENTS 14 

  

 

 

 

Raykov, T., & Marcoulides, G. A. (2017). Thanks coefficient alpha, we still need you! 

Educational and Psychological Measurement. Advance online publication. Doi: 

10.1177/0013164417725127 

Sijtsma, K. (2009). On the use, the misuse, and the very limited usefulness of Cronbach’s alpha. 

Psychometrika, 74(1), 107-120. doi: 10.1007/s11336-008-9101-0 

Spearman, C. (1904). The proof and measurement of association between two things. American 

Journal of Psychology, 15(1), 72-101.  

 

 


