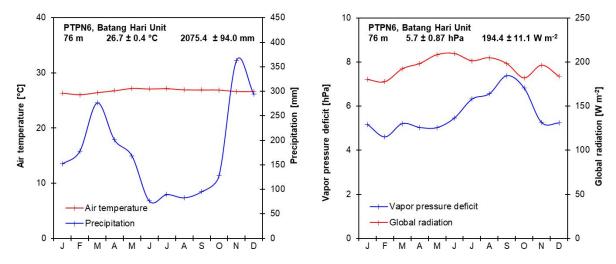
1 Supplementary materials

2 Supplementary Data

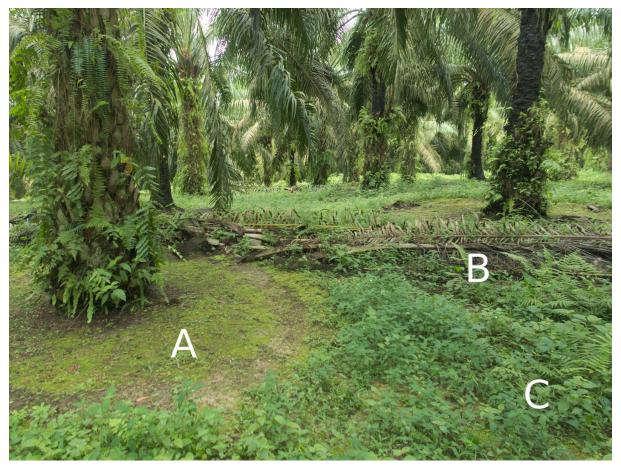
2.1 Basis for the rates of reduced fertilization

The reduced fertilization rates for nitrogen (N), phosphorus (P) and potassium (K) were based on the exported amount from the harvested fruit bunches. At the PTPN6 mill, we selected randomly 20 harvested fruit bunches, from which we randomly sampled fruits and bunch stalks. We made three composite samples of fruits and stalks separately. From these composite samples, moisture, N, P, and K contents were determined. Gravimetric moisture content was determined by over-drying the samples at 60 °C until stable weights were attained (5-7 days). Total N content was determined from oven-dried and ground samples using a CN analyzer (Vario EL Cube, Elementar Analysis Systems GmbH, Hanau, Germany). Total P and K contents were analyzed from the ground samples by pressure digestion in concentrated HNO₃ followed by analysis of the digests using the inductively coupled plasma-atomic emission spectrometer (iCAP 6300 Duo VIEW ICP Spectrometer, Thermo Fischer Scientific GmbH, Dreieich, Germany). The fruits had on average 0.5 g water g^{-1} , 0.7% N, 0.9 mg P g^{-1} , and 3.8 mg K g^{-1} ; the stalks contained 4.6 g water g^{-1} , 1.1% N, 1.1 mg P g⁻¹, and 62.6 mg K g⁻¹. The recorded long-term yield average at PTPN6 was equivalent to 17000 kg dry fruits ha⁻¹ yr⁻¹ and 2000 kg dry stalks ha⁻¹ year⁻¹ or, on average, 19000 kg dry fruit bunches ha⁻¹ yr-¹. This was calculated from the long-term average harvest record at PTPN6 of 11 fruit bunches tree⁻¹ yr⁻¹, each 23 kg fresh weight with 70% fruits and 30% stalks (similar as those reported by Corley and Tinker, 2013), and an average of 142 trees ha⁻¹. The dry-mass yield multiplied by the nutrient element contents equals to the average harvest exports of 136 kg N, 17 kg P and 187 kg K ha⁻¹ yr⁻¹.

2.2 Specific hypotheses

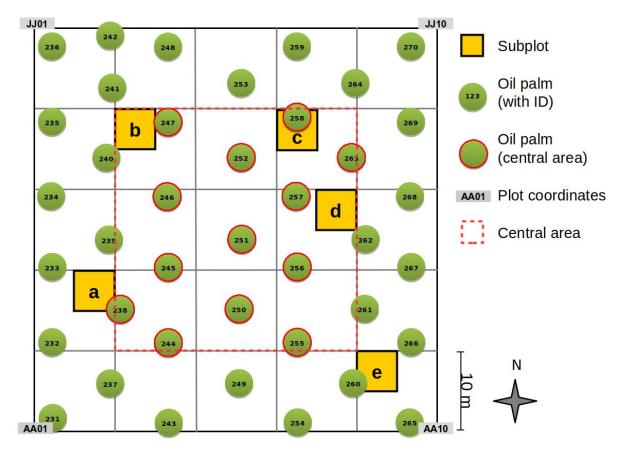

We hypothesized that the reduced fertilization treatments do not affect mineral nitrogen levels in palm circles, so that oil palm productivity (stem growth, leaf area, fresh fine roots biomass, and yields) would be unaffected. Under herbicide spraying, oil palm fine root biomass should decrease due to direct contact with herbicide-sprayed plants. However, there is still natural variation in soil parameters that can be considered in the structural equation model: in palm circles, we hypothesized that soil moisture, base saturation, and mineral nitrogen have a positive influence on oil palm yield, and vegetative productivity variables such as oil palm roots, stem growth, and leaf area index should correlate with it. However, base cations in palm circles and frond-piled areas were already saturated (>93% for all treatment averages), so we decided to leave them out of the structural equation model.

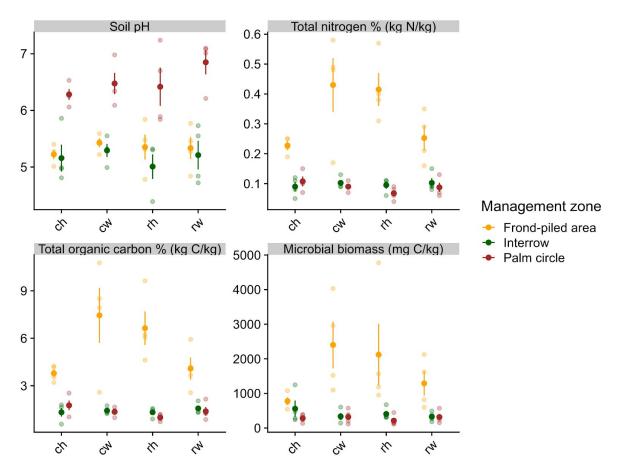
For soil nutrients and functions, we hypothesized that plant cover in the interrows increases nutrient retention and organic matter, leading to a measurable increase in base saturation, microbial biomass, and mineral nitrogen. We expect that plant cover can lead both to higher soil moisture through increased water infiltration and reduced soil evaporation, as well as lower soil moisture due to higher transpiration. Natural variation in soil parameters should show that high bulk density, through lower soil porosity, is associated with reduced water infiltration and higher water moisture. However, we do not expect changes in bulk density during the first two years of the experiment. We did not test effects of plant cover on other variables in the frond-piled area and palm circles because of the low ground vegetation coverage. We hypothesized that increased fertilization rates positively affect mineral nitrogen and base saturation (the negative effect of soil acidification is prevented by liming), but also inhibit microbial biomass and nitrogen mineralization, so that the net effect on mineral nitrogen is null. Correspondingly, we hypothesized that higher microbial biomass will increase mineral nitrogen as a result of its activity on nitrogen mineralization. In the frond-piled area, we hypothesized a positive effect of litter decomposition on nutrient and organic carbon levels in the soil, and hence we predicted higher microbial biomass, mineral nitrogen and base saturation. Mineral nitrogen and base saturation in turn will stimulate plant cover. We did not hypothesize links between oil palm leaf litter decomposition and other variables in the other zones because in practice, oil palm leaf litter only accumulates in the frond-piled area.


We further hypothesized that mechanical weeding would benefit above-and belowground biodiversity with changes propagating through the trophic chain. Specifically, we predicted that mechanical weeding leads to 1) increased plant cover and species richness, 2) both respectively leading to higher community metabolism of decomposer animals and soil animal groups richness, as well as higher arthropod abundance and insect richness, 3) the latter both respectively leading to higher bird and insectivorous bat vocalization activity, and species and morpho-species richness. We also hypothesized that plant cover and richness respectively increase bird activity and richness, because most birds in oil palm are omnivorous, feeding on fruits and seeds and thus relying on plants. We hypothesized that reduced fertilization would not have immediate effects on vegetation parameters because its application is restricted to palm circles. However, we hypothesized that reduced fertilization will decrease community metabolism of decomposer animals due to a reduced resource supply for the soil food web.

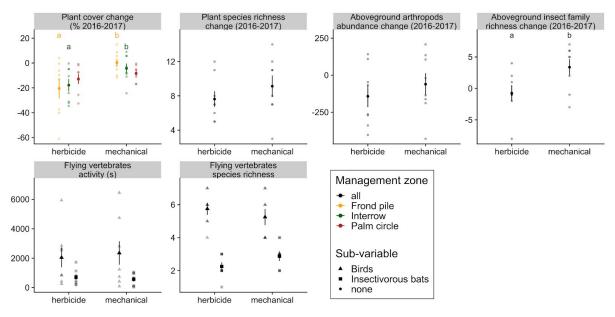
3 Supplementary Figures and Tables

3.1 Supplementary Figures


Supplementary Figure 1: Averaged climatic variables measured at the PTPN6 meteorological tower during the period March 2014 to May 2019. Left panel: Monthly average air temperature and monthly accumulated precipitation. Due to sensor failure there are no precipitation measurements during the period September 2016 to June 2017. Right panel: Monthly average atmospheric vapour pressure deficit and monthly average global radiation.


Supplementary Figure 2. The three typical management zones in the PTPN6 oil palm plantation. Fertiliser is applied within palm circles (A) which were regularly weeded, cut fronds are stacked on frond piles (B), and the interrows (C) that cover most of the plantation are used for accessing the palms.

2		leaf area	index		
3		meteo	station		
4 soil incubation	experiment				
.a -	plant-available N and P			plant-available N and P	
h -		soil-exchangea	ble base cations		
status	leaching losses			leaching losses	
done		soil-available N	i)		
– – ongoing	N2 fixation	N2 calibratio	n		
f	matric water potential			matric water potential	
1-				soil GHG fluxes	
	water infiltration				
	soil prokaryotes		soil prokaryotes		
understory p	plants unders	story plants	understory plants	understory plants	
	myo	corrhiza			
	soil fau	una	soil fauna		
litto	r decomposition bags				
flying insect	s flying i	nsects	flying insects	flying insects	
		nd bat recordings	bird and bat reco		dings
harves	st measurement	0	_		
fertilizing	and weeding				
,	palm height	palm h	eight	palm height	
>-	canopy openness		opy openness	canopy openness	
d -	canopy openness	Car	ору оронноза		


Supplementary Figure 3. Calendar of sampling activities carried out in the oil palm management experiment.

Supplementary Figure 4. Example plot layout (OM2cw). Coordinate labels are situated at every grid intersection but were omitted here for clarity.

Supplementary Figure 5. Additional soil parameters that were not analysed in the main text. Data points are indicated with semi-transparent dots. Mean values are indicated with bigger, opaque dots. Error bars show standard errors of the mean, and significant differences between means are shown with distinct letters, color-coded according to the management zone.

Supplementary Figure 6. Responses of aboveground organisms to the weeding treatments. Data points are indicated with semi-transparent dots. Mean values are indicated with bigger, opaque dots. Error bars show standard errors of the mean, and significant differences between means are shown with distinct letters, color-coded according to the management zone.

3.2 Supplementary Tables

Supplementary Table 1. Taxonomic groups for soil animals. Metabolic rates are shown only for decomposers.

Group	Rank	General guild	Mean body mass, µg	Mean individual metabolic rate, J h-1
Annelida	phylum	decomposers	600599	1.31005
Araneae	order	predators	783	
Blattodea	order	decomposers	23106	0.2573358
Chilopoda	class	predators	909	
Coleoptera	order	mixed	337	
Collembola	order	decomposers	14	0.00109
Dermaptera	order	omnivores	44	
Diplopoda	class	decomposers	338	0.01216
Diplura	order	mixed	150	
Diptera	order	mixed	85	
Formicidae	family	omnivores	689	
Hemiptera	order	mixed	340	
Hymenoptera	order	predators	NA	
Isopoda	order	decomposers	417	0.01764129
Isoptera	class	decomposers	954	0.0277906
Lepidoptera	order	herbivores	147	
Mesostigmata	order	predators	14	
Opiliones	order	predators	768	

Oribatida	order	decomposers	8	0.00016
Orthoptera	order	herbivores	2295	
Pauropoda	class	decomposers	30	0.003223414
Prostigmata	order	predators	8	
Protura	order	decomposers	20	0.00109
Pseudoscorpionida	class	predators	199	
Psocoptera	order	decomposers	154	0.00594
Schizomida	order	predators	509	
Staphylinidae	family	predators	337	
Symphyla	class	decomposers	170	0.00867
Thysanoptera	order	herbivores	55	

Supplementary Table 2. Results from the categorical analysis of treatment effects on all the measured variables within the oil palm management experiment.

Variable	Treatment	Mean	Standard error
Yield increment per palm (kg,	ch	30.1	10.47 to 49.72
2017-2018)	cw	32.27	15.8 to 48.74
	rh	-0.96	-18.85 to 16.92
	rw	12.09	-23.88 to 48.07
Leaf area index	ch	2.4	2.03 to 2.76
	cw	2.51	2.2 to 2.82
	rh	2.66	2.27 to 3.06
	rw	2.42	2.03 to 2.81
Fresh fine roots (kg/m2) Interrow	ch	0.58	0.51 to 0.66
	cw	0.72	0.49 to 0.95
	rh	0.47	0.36 to 0.58
	rw	0.5	0.45 to 0.54
Stem growth (m, 2017-2019)	ch	1	0.88 to 1.12
	cw	1.12	0.97 to 1.26
	rh	1.1	1.04 to 1.16
	rw	0.93	0.79 to 1.07
Bulk density (g/cm3) Frond-piled area	ch	0.56	0.51 to 0.61
	cw	0.44	0.33 to 0.54
	rh	0.53	0.42 to 0.65
	rw	0.56	0.48 to 0.64
Bulk density (g/cm3) Interrow	ch	1.23	1.2 to 1.26
	cw	1.2	1.14 to 1.26

		1	
	rh	1.21	1.14 to 1.28
	rw	1.17	1.12 to 1.21
Bulk density (g/cm3) Palm circle	ch	1.2	1.14 to 1.26
	cw	1.27	1.22 to 1.31
	rh	1.23	1.18 to 1.28
	rw	1.23	1.18 to 1.28
Microbial biomass (mg N/kg)	ch	109.88	91.62 to 128.15
Frond-piled area	cw	196.24	155.83 to 236.65
	rh	199.14	141.59 to 256.68
	rw	115.94	92.6 to 139.29
Microbial biomass (mg N/kg) Interrow	ch	42.82	29.79 to 55.85
	cw	25.64	21.26 to 30.03
	rh	21.57	17.52 to 25.62
	rw	27.27	20.87 to 33.67
Microbial biomass (mg N/kg) Palm circle	ch	18.84	14.75 to 22.93
	cw	21.16	13.93 to 28.39
	rh	15.76	14.58 to 16.93
	rw	24.52	20.79 to 28.24
Mineral nitrogen (mg N/kg) Palm circle	ch	1.08	0.86 to 1.3
	cw	0.97	0.81 to 1.14
	rh	1.02	0.73 to 1.3
	rw	0.92	0.74 to 1.11
Water infiltration Interrow (cm/h)	ch	2.26	2.15 to 2.37
	cw	2.34	1.75 to 2.93
	rh	1.45	1.28 to 1.62

	rw	2.27	1.97 to 2.57
Belowground animals group richness	ch	15.75	14.5 to 17
	cw	16.25	15.62 to 16.88
	rh	15.25	14.5 to 16
	rw	17.75	16.8 to 18.7
Mineral nitrogen (mg N/kg) Interrow	ch	0.91	0.84 to 0.99
	cw	0.88	0.77 to 0.98
	rh	0.99	0.83 to 1.16
	rw	0.89	0.85 to 0.93
Mineral nitrogen (mg N/kg) Frond-piled	ch	5.71	5.36 to 6.06
area	cw	4.47	3.62 to 5.32
	rh	4.77	4.69 to 4.85
	rw	4.39	3.81 to 4.96
Decomposer animals metabolism	ch	47.25	29.9 to 64.6
(J/h/m2)	cw	161	83.59 to 238.41
	rh	63.25	39.41 to 87.09
	rw	88	60.36 to 115.64
Aboveground arthropods abundance	ch	-67.25	-143.73 to 9.23
change (2016-2017)	cw	-52	-182.09 to 78.09
	rh	-217.75	-340.66 to -94.84
	rw	-69.75	-162.96 to 23.46
Plant cover change (% 2016-2017)	ch	-16.6	-23.49 to -9.71
Interrow	cw	-1	-8.84 to 6.84
	rh	-19.15	-27.39 to -10.91
	rw	-7.65	-9.34 to -5.96

Plant cover change (% 2016-2017) Palm	ch	-10.45	-16.28 to -4.62
circle	cw	-9.3	-12.7 to -5.9
	rh	-15.2	-21.15 to -9.25
	rw	-7.31	-10.66 to -3.97
Plant cover change (% 2016-2017) Frond	ch	-21.12	-34.69 to -7.56
pile	cw	-2.08	-6.03 to 1.86
	rh	-19.87	-30.93 to -8.82
	rw	2.6	-2.93 to 8.14
Plant species richness change	ch	8	6.53 to 9.47
(2016-2017)	cw	8.75	6.36 to 11.14
	rh	7.25	5.94 to 8.56
	rw	9.5	8.31 to 10.69
Aboveground insect family richness	ch	-1.5	-3.97 to 0.97
change (2016-2017)	cw	2.5	0.48 to 4.52
	rh	0	-0.91 to 0.91
	rw	4.25	2.45 to 6.05
Insectivorous bat activity (s)	ch	871.5	523.01 to 1219.99
	cw	471.25	253.58 to 688.92
	rh	530	385.97 to 674.03
	rw	658.25	427.47 to 889.03
Bird species richness	ch	6.25	5.77 to 6.73
	cw	5.25	4.5 to 6
	rh	5.25	4.77 to 5.73
	rw	5.25	4.5 to 6
Insectivorous bat species richness	ch	2.25	2 to 2.5

			1
	cw	3.25	3 to 3.5
	rh	2.25	1.77 to 2.73
	rw	2.5	2 to 3
Bird activity (s)	ch	2619.25	1417.16 to 3821.34
	cw	2382.75	1482.18 to 3283.32
	rh	1464.75	809.58 to 2119.92
	rw	2325.75	863.19 to 3788.31
Base saturation (%) Interrow	ch	55.39	40.49 to 70.29
	cw	70.62	61.54 to 79.69
	rh	48.05	36.49 to 59.62
	rw	59.73	41.91 to 77.55
Base saturation (%) Palm circle	ch	99.34	98.88 to 99.8
	cw	99.81	99.73 to 99.88
	rh	98.95	98.39 to 99.5
	rw	99.8	99.7 to 99.9
Base saturation (%) Frond-piled area	ch	95.79	95.33 to 96.26
	cw	98.64	98.03 to 99.26
	rh	97.13	95.43 to 98.83
	rw	93	89.12 to 96.88
Moisture content (%) Interrow	ch	20.6	19.56 to 21.63
	cw	18.92	18.31 to 19.53
	rh	21.23	20.31 to 22.16
	rw	20.56	19.85 to 21.27
Moisture content (%) Palm circle	ch	20	19.14 to 20.87
	cw	19.32	18.07 to 20.57

	rh	19.05	18.04 to 20.06
	rw	20.4	19.19 to 21.62
Moisture content (%) Frond-piled area	ch	50.01	46.91 to 53.1
	cw	48.88	41.34 to 56.42
	rh	60.03	56.14 to 63.91
	rw	52.43	46.59 to 58.27
Gross margin (% 2017)	ch	0.72	0.7 to 0.73
	cw	0.75	0.74 to 0.76
	rh	0.79	0.78 to 0.79
	rw	0.78	0.75 to 0.81
Gross margin (% 2018)	ch	0.7	0.68 to 0.71
	cw	0.73	0.73 to 0.73
	rh	0.74	0.73 to 0.76
	rw	0.76	0.75 to 0.77
Decomposition (%/8 mo) Interrow	ch	74.71	70.48 to 78.94
	cw	71.17	69.34 to 73
	rh	73.27	68.15 to 78.4
	rw	74.7	71.74 to 77.67
Decomposition (%/8 mo) Palm circle	ch	67.66	63.3 to 72.01
	cw	74.04	70.95 to 77.13
	rh	80.86	NA to NA
	rw	77.79	75.55 to 80.04
Decomposition (%/8 mo) Frond-piled	ch	65.6	58.8 to 72.39
area	cw	71.38	65.57 to 77.18
	rh	72.54	68.45 to 76.64

	rw	72.9	69.2 to 76.6
--	----	------	--------------