
Pape et al. Leveraging Domain Knowledge with Lifted Multicuts

7 APPENDIX
7.1 Overview of problem set-up

Normal Edges Dense Lifted Edges Sparse Lifted Edges

Drosophila Neural Tissue Mean boundary evidence - False merge
oracle predictions

Murine Neural Tissue RF based on edge features RF based on region/
clustering features

RF based on axon/
dendrite attribution

Sponge Choanocytes Mean boundary evidence - semantic segmentation of
small structures

Arabidopsis Roots Mean boundary evidence - instance segmentation
of nuclei

Table 5. Overview of the three problem set-ups. RF abbreviates random forest.

7.2 Hierarchical Lifted Multicut Solver

Data: graph G, edge weights WE , lifted edges and weights F and WF , nLevels, blockShape
Result: node partition P
Ĝ, F̂ , ŴE , ŴF = G,F,WE ,WF ;
for n in nLevels do

1 blocks = getBlocks(blockShape);
subPartitions = [];
/* this for-loop can be parallelized */
for block in blocks do

2 Gsub,W
sub
E = getSubproblem(Ĝ, ŴE , block);

3 Fsub,W
sub
F = getLiftedEdges(Gsub, F̂ , ŴF );

4 Psub = solveLiftedMulticut(Gsub,W
sub
E , Fsub,W

sub
F );

subPartitions.append(Psub);
end

5 Ĝ, F̂ , ŴE , ŴF = reduceProblem(Ĝ, F̂ , ŴE , ŴF , subPartitions);
blockShape *= 2;

end
P = solveLiftedMulticut(Ĝ, F̂ , ŴE , ŴF );
P = projectToInitialGraph(G,P );

Algorithm 1: Hierarchical lifted multicut algorithm based on the approximate multicut solver of (Pape
et al., 2017). (1): getBlocks tiles the volume with blocks of blockShape. (2): getSubproblem extracts the
sub-graph and weights of edges in this graph from the given block coordinates. (3): getLiftedEdges extracts
the lifted edges that connect nodes which are both part of the sub-graph as well as the corresponding
weights. (4): solveLiftedMulticut solves the lifted multicut problem using one of the two approximate
solvers (Beier et al., 2017; Keuper et al., 2015). (5): reduceProblem: reduces the graph by contracting
nodes according to the sub-partition results. Also updates edge weights as well as lifted edges and their
weights accordingly.

Frontiers 19



Pape et al. Leveraging Domain Knowledge with Lifted Multicuts

Energy Time [s]
Greedy-Additive (Beier et al., 2016) -1585593.5 2.03
Kernighan-Lin (Keuper et al., 2015) -1645876.7 174.69
Fusion-Moves (Beier et al., 2016) -1645876.7 181.48
Hierarchical (Ours) -1630274.3 3.29

Table 6. Evaluating our proposed hierarchical solver and other multicut solvers. In order to run this
experiment, we have constructed a smaller lifted multicut problem from the Drosophila neural tissue dataset
by cutting out a 1 × 10 × 10 micron block from its center, computing graph and local edge weights as
described in section 4, introducing dense lifted edges within a graph neighborhood of 2 and setting their
costs to the most repulsive edge cost along the weighted shorted path between the edge’s terminal nodes.
The problem at hand contained approximately 34,000 nodes, 244,000 normal edges and 2,384,000 lifted
edges. The evaluation shows that the proposed solver yields energies comparable to Kernighan-Lin or
Fusion-Moves, but its runtime is two orders of magnitude smaller and comparable to Greedy-Additive
(which yields inferior energies). Kernighan-Lin was warm-started with the results of Greedy-Additive and
Fusion-Moves with the results of Kernighan-Lin. Hierarchical has used Kernighan-Lin (warm-started with
the solution of Greedy-Additive) for the sub-problems. While we only compare the solvers for a single
problem size, we have observed very good scalability of our solver, which has solved much larger problems
in section 4.

This is a provisional file, not the final typeset article 20


