Supplementary Material

First large-scale Eastern Mediterranean and Black Seas stock assessment reveals total collapse of marine fisheries

Nazli Demirel, Mustafa Zengin, Aylin Ulman

Here we present, all outputs of CMSY stock assessment analysis for 54 stocks from Black, Marmara and Levantine Seas. Each stocks represented with graphs in two pages.

In the first page: Assessments for respective stock (top left) in the respective sea (bottom left). Panel A shows in black the time series of catches and in blue the three-years moving average with indication of highest and lowest catch, as used in the estimation of prior biomass by the default rules. Panel B shows the explored r-k log space and in dark grey the r-k pairs which were found by the CMSY model to be compatible with the catches and the prior information. Panel C shows the most probable r-k pair and its approximate 95\% confidence limits in blue. The black dots are possible r-k pairs found by the BSM model, with a red cross indicating the most probable r-k pair and its 95\% confidence limits. Panel D shows in blue the biomass trajectory estimated by CMSY, scaled to the BSM estimate of Bmsy $=0.5 \mathrm{k}$, and. Dotted lines indicate the $2.5^{\text {th }}$ and $97.5^{\text {th }}$ percentiles. Vertical blue lines indicate the prior biomass ranges. Panel E shows in blue the corresponding harvest rate from CMSY, scaled to the r/2 estimate of BSM, and. Panel F shows the Schaefer equilibrium curve of catch/MSY relative to B/k, here indented at $\mathrm{B} / \mathrm{k}<0.25$ to account for reduced recruitment at low stock sizes, the curve shows predictions by CMSY, from first year (square) to last years (triangle).

In the second page: Tthe graphs meant to inform management. The upper left panel shows catches relative to the BSM estimate of MSY, with indication of 95% confidence limits in grey. The upper right panel shows the development of relative total biomass $\left(B / B_{m s y}\right)$, with the grey area indicating uncertainty. The lower left graph shows relative exploitation ($\mathrm{F} / \mathrm{F}_{\mathrm{msy}}$), with $\mathrm{F}_{\text {msy }}$ corrected for reduced recruitment below $0.5 \mathrm{~B}_{\text {msy }}$. The lower-right panel shows the trajectory of relative stock size ($\mathrm{B} / \mathrm{B}_{\mathrm{msy}}$) over relative exploitation ($\mathrm{F} / \mathrm{F}_{\mathrm{msy}}$).

A: Catch Anchovy_BS

D: Stock size

B: Finding viable r-k

E: Exploitation rate

C: Analysis of viable r-k

F: Equilibrium curve

Catch

Exploitation

Stock size

A: Catch Sprat_BS

D: Stock size

B: Finding viable r-k

r

E: Exploitation rate

C: Analysis of viable r-k

F: Equilibrium curve

Catch

Exploitation

Stock size

A: Catch MedHMack_BS

B: Finding viable r-k

r

D: Stock size

E: Exploitation rate

C: Analysis of viable r-k

F: Equilibrium curve

Catch

Exploitation

Stock size

A: Catch HorseMack_BS

D: Stock size

B: Finding viable r-k

r

E: Exploitation rate

C: Analysis of viable r-k

F: Equilibrium curve

Catch

Exploitation

Stock size

A: Catch AChub_BS

D: Stock size

B: Finding viable r-k

E: Exploitation rate

C: Analysis of viable r-k

F: Equilibrium curve

Catch

Exploitation

Stock size

A: Catch Shad_BS

B: Finding viable r-k

E: Exploitation rate

C: Analysis of viable r-k

F: Equilibrium curve

Catch

Exploitation

Stock size

A: Catch Picarel_BS

D: Stock size

B: Finding viable r-k

E: Exploitation rate

C: Analysis of viable r-k

F: Equilibrium curve

Catch

Exploitation

Stock size

A: Catch Bluefish_BS

D: Stock size

B: Finding viable r-k

r

E: Exploitation rate

C: Analysis of viable r-k

F: Equilibrium curve

Catch

Exploitation

Stock size

A: Catch Bonito_BS

B: Finding viable r-k

E: Exploitation rate

C: Analysis of viable r-k

F: Equilibrium curve

Catch

Exploitation

Stock size

A: Catch Whiting_BS
B: Finding viable r-k

D: Stock size

F: Equilibrium curve

Catch

Exploitation

Stock size

A: Catch Garfish_BS

B: Finding viable r-k

E: Exploitation rate

C: Analysis of viable r-k

F: Equilibrium curve

Catch

Exploitation

Stock size

A: Catch Turbot_BS

D: Stock size

B: Finding viable r-k

E: Exploitation rate

C: Analysis of viable r-k

F: Equilibrium curve

Catch

Exploitation

Stock size

A: Catch Mullet_BS

B: Finding viable r-k

r

D: Stock size

E: Exploitation rate

C: Analysis of viable r-k

F: Equilibrium curve

Catch

Exploitation

Stock size

A: Catch Raja_BS

B: Finding viable r-k

r

E: Exploitation rate

C: Analysis of viable r-k

F: Equilibrium curve

Catch

Exploitation

Stock size

A: Catch Dogfish_BS

D: Stock size

B: Finding viable r-k

E: Exploitation rate

C: Analysis of viable r-k

F: Equilibrium curve

Catch

Exploitation

Stock size

A: Catch Venus_BS

D: Stock size

B: Finding viable r-k

E: Exploitation rate

C: Analysis of viable r-k

F: Equilibrium curve

Catch

Exploitation

Stock size

A: Catch Sardine_Med

D: Stock size

B: Finding viable r-k

E: Exploitation rate

C: Analysis of viable r-k

F: Equilibrium curve

Catch

Exploitation

Stock size

A: Catch HorseMack_Med

D: Stock size

B: Finding viable r-k

E: Exploitation rate

C: Analysis of viable r-k

F : Equilibrium curve

Catch

Exploitation

Stock size

A: Catch MedHMack_Med

D: Stock size

B: Finding viable r-k

E: Exploitation rate

C: Analysis of viable r-k

F: Equilibrium curve

Catch

Exploitation

Stock size

A: Catch Bogue_Med

B: Finding viable r-k

r

D: Stock size

E: Exploitation rate

C: Analysis of viable r-k

F: Equilibrium curve

Catch

Exploitation

Stock size

A: Catch Bonito_Med

B: Finding viable r-k

r

D: Stock size

E: Exploitation rate

C: Analysis of viable r-k

F: Equilibrium curve

Catch

Exploitation

Stock size

A: Catch Bluefish_Med
B: Finding viable r-k

D: Stock size

F: Equilibrium curve

Catch

Exploitation

Stock size

A: Catch Whiting_Med

D: Stock size

B: Finding viable r-k

E: Exploitation rate

C: Analysis of viable r-k

F: Equilibrium curve

Catch

Exploitation

Stock size

A: Catch Seabass_Med

B: Finding viable r-k

D: Stock size

E: Exploitation rate

C: Analysis of viable r-k

F: Equilibrium curve

Catch

Exploitation

Stock size

A: Catch Grouper_Med

D: Stock size

B: Finding viable r-k

E: Exploitation rate

C: Analysis of viable r-k

F: Equilibrium curve

Catch

Exploitation

Stock size

A: Catch Leerfish_Med

D: Stock size

B: Finding viable r-k

E: Exploitation rate

C: Analysis of viable r-k

F: Equilibrium curve

Catch

Exploitation

Stock size

A: Catch Mullet_Med

D: Stock size

B: Finding viable r-k

r

E: Exploitation rate

C: Analysis of viable r-k

F: Equilibrium curve

Catch

Exploitation

Stock size

A: Catch Surmullet_Med

B: Finding viable r-k

D: Stock size

E: Exploitation rate

C: Analysis of viable r-k

F : Equilibrium curve

Catch

Exploitation

Stock size

A: Catch Meagre_Med

D: Stock size

B: Finding viable r-k

r

E: Exploitation rate

C: Analysis of viable r-k

F: Equilibrium curve

Catch

Exploitation

Stock size

A: Catch Dentex_Med

D: Stock size

B: Finding viable r-k

E: Exploitation rate

C: Analysis of viable r-k

F: Equilibrium curve

Catch

Exploitation

Stock size

A: Catch Conger_Med

B: Finding viable r-k

r

D: Stock size

E: Exploitation rate

C: Analysis of viable r-k

F: Equilibrium curve

Catch

Exploitation

Stock size

A: Catch Annular_Med

D: Stock size

B: Finding viable r-k

E: Exploitation rate

C: Analysis of viable r-k

F: Equilibrium curve

Catch

Exploitation

Stock size

A: Catch Saddled_Med

B: Finding viable r-k

D: Stock size

E: Exploitation rate

C: Analysis of viable r-k

F: Equilibrium curve

Catch

Exploitation

Stock size

A: Catch Seabream_Med

D: Stock size

B: Finding viable r-k

r

E: Exploitation rate

C: Analysis of viable r-k

F: Equilibrium curve

Catch

Exploitation

Stock size

A: Catch Dogfish_Med

D: Stock size

B: Finding viable r-k

r

E: Exploitation rate

C: Analysis of viable r-k

F: Equilibrium curve

Catch

Exploitation

Stock size

A: Catch Octopus_Med

D: Stock size

E: Exploitation rate

C: Analysis of viable r-k

F: Equilibrium curve

Catch

Exploitation

Stock size

A: Catch Cuttlefish_Med

B: Finding viable r-k

r

D: Stock size

E: Exploitation rate

C: Analysis of viable r-k

F: Equilibrium curve

Catch

Exploitation

Stock size

A: Catch Anchovy_MS

B: Finding viable r-k

E: Exploitation rate

C: Analysis of viable r-k

F: Equilibrium curve

Catch

Exploitation

Stock size

A: Catch Sardine_MS

B: Finding viable r-k

E: Exploitation rate

C: Analysis of viable r-k

F: Equilibrium curve

Catch

Exploitation

Stock size

A: Catch HorseMack_MS

D: Stock size

B: Finding viable r-k

r

E: Exploitation rate

C: Analysis of viable r-k

F: Equilibrium curve

Catch

Exploitation

Stock size

A: Catch MedHMack_MS

D: Stock size

B: Finding viable r-k

r

E: Exploitation rate

C: Analysis of viable r-k

F: Equilibrium curve

Catch

Exploitation

Stock size

A: Catch AChub_MS

D: Stock size

B: Finding viable r-k

E: Exploitation rate

C: Analysis of viable r-k

F: Equilibrium curve

Catch

Exploitation

Stock size

A: Catch Mackerel_MS

D: Stock size

B: Finding viable r-k

r

E: Exploitation rate

C: Analysis of viable r-k

F: Equilibrium curve

Catch

Exploitation

Stock size

A: Catch Bluefish_MS

D: Stock size

B: Finding viable r-k

E: Exploitation rate

C: Analysis of viable r-k

F: Equilibrium curve

Catch

Exploitation

Stock size

A: Catch Bonito_MS

D: Stock size

B: Finding viable r-k

r

E: Exploitation rate

C: Analysis of viable r-k

F: Equilibrium curve

Catch

Exploitation

Stock size

A: Catch Whiting_MS

D: Stock size

B: Finding viable r-k

E: Exploitation rate

C: Analysis of viable r-k

F: Equilibrium curve

Catch

Exploitation

Stock size

A: Catch Hake_MS

B: Finding viable r-k

r

D: Stock size

E: Exploitation rate

C: Analysis of viable r-k

F: Equilibrium curve

Catch

Exploitation

Stock size

A: Catch Turbot_MS

r

D: Stock size

E: Exploitation rate

C: Analysis of viable r-k

F: Equilibrium curve

Catch

Exploitation

Stock size

A: Catch Mullet_MS

B: Finding viable r-k

r

D: Stock size

E: Exploitation rate

C: Analysis of viable r-k

F: Equilibrium curve

Catch

Exploitation

Stock size

A: Catch Surmullet_MS

C: Analysis of viable r-k

D: Stock size

B: Finding viable r-k

E: Exploitation rate

F: Equilibrium curve

Catch

Exploitation

Stock size

A: Catch Raja_MS

D: Stock size

B: Finding viable r-k

r

E: Exploitation rate

C: Analysis of viable r-k

F: Equilibrium curve

Catch

Exploitation

Stock size

A: Catch Dogfish_MS

D: Stock size

B: Finding viable r-k

E: Exploitation rate

C: Analysis of viable r-k

F: Equilibrium curve

Catch

Exploitation

Stock size

A: Catch Angelshark_MS

D: Stock size

B : Finding viable r-k

E: Exploitation rate

C: Analysis of viable r-k

F: Equilibrium curve

Catch

Exploitation

Stock size

A: Catch RoseShrimp_MS

D: Stock size

B: Finding viable r-k

E: Exploitation rate

C: Analysis of viable r-k

F: Equilibrium curve

Catch

Exploitation

Stock size

