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APPENDIX A

The G&R computational model is used to generate in silico data for pre-training the deep structure. In the
G&R, the arterial wall is considered a homogenized mixture of three stress-bearing constituents, including
elastin, collagen fiber and smooth muscle. The strain energy for the elastin, collagen fiber families (k
=1,...,4) and passive smooth muscle are given as
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where 0[11]’ C’[ 29) and 0[612} are components of C¢ (¢) which represents the green tensor of elastin from its
stress-free configuration to current configuration; )\Z () (t) and )\Z ) (t) represent the stretch of collagen

fiber from their stress-free configurations to current configurations. C¢ (t), /\2 (r (t) and N n(r )( ) can be
provided by kinematics of G&R that is explicitly expressed in Baek et al. (2006)); |[Zeinali-Davarani et al.
(2011); Farsad et al.|(2015). Accordingly, due to the constant turnover of aortic materials, the total stored
energy per unit reference area of AAA is expressed as the summation of all strain energies contributed by
various survival masses, i.e.,

w(t) = Y {M0)Qi (1) E(C / ! (1)g (1, 7)W(C (1))} @
i
where ¥(C? ) (t)) represents the stored energy of constituent i synthesized at time 7; M*(0) represents the

initial mass of constituent ; mi(T), which is indicated at M(2) (‘M’ indicates the equation number referred
in the main text), represents the stress-mediated mass production rate of constituent ; that synthesized at
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time 7; Q*(¢) and ¢*(t, 7) represent the survival functions, which are the survival fraction of the initial mass
and the mass produced at time 7, respectively.

Along with the given energy function aortic wall w(t), we use the principle of virtual work to provide the
weak form of the proposed method, which is expresses as
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where Pn denotes the inner pressure vector applied to the aortic wall; .S and s correspond to the surface
of aorta in reference and current configurations, respectively; dx denotes the virtual changes in position.
Using the FEM formulation, we can approximate the current position by

x = OxP, 4)

where x” is the nodal vector for the current position, and @ is the shape function matrix. Therefore, all the
other kinematic variables can be expressed by the shape functions and the current nodal coordinates; thus
we obtain the governing equation which can computed using Newton-Raphson method. Details of FEM
formulation and solving strategy can be found in |[Kyriacou et al.[(1996); Baek et al.| (2007).

APPENDIX B
Proof of Corollary 3.2:

We illustrate the proof for N = 2, then the proof for an arbitrary /V is straightforward. Let
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So, applying M(13), we have
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Rearrange the terms, we have an equivalent system of equations
(1+b+e) / m(z)g3(x)de =0 — /ﬂ(:c)gg(x)dx =0,
T T
(a+d) / m(z)rgs(r)dr =0 — /W(x)xgg(x)dx =0,
x xT
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which is the condition M(12).

APPENDIX C
In a CD-k learning, the gradient of the parameter 6; is approximated by
log P(x)
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where P (X, h) is the distribution of the reconstructed visible data X after k steps of Gibbs sampling and €
is the learn rate. In this study, we utilize CD-1 that involves one full step of Gibbs sampling, i.e., P;(X, h).
Applying M(6) to M(17), we have the learning update rules for each RBM layer as follows.
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where NN is number of samples and ﬁj and 7; are sampled with the distributions in M(18).
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