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1. Optimization of parameters for nanoSIMS measurement

In order to get a considerable precision in isotopic composition at single-cell level, the nanoSIMS
measurement parameters were optimized prior the analysis of isotope-labelled samples.
P. stutzeri cells were prepared as explained in material and methods section for nanoSIMS analysis.
Cells prior labelling were analyzed in order to avoid further effect of single cell variability in *C
uptake. Therefore, single-cell precision of the derived isotope content was evaluated at the level of
natural 3C abundance.
Analysis of single-cell isotopic content was performed using a NanoSIMS 50L instrument

(AMETEK, Cameca) detecting 7 secondary molecular ion species: 160, 12C,7, $3C'?C", 2C¥*N,
13C¥N-, 325 and *P°0, . For the optimization, two main parameters were tuned: primary ion (PI)
current and analyzed area size. The ability to focus the Pl beam down to 30 nm resolution is usually
achieved with the reduction of the beam current. In the present study, the nanoSIMS performance has
been tested with 2 different values of PI current: 2 and 4 pA in order to clarify the possibility of
speeding-up the measurement and enhancing counting statistics with higher secondary ion counts
compromising the focus quality. Different sizes of analysis area were checked to reach an optimal
pixel-count statistics for each single-cell-Rol with an acceptable number of single-cells resolved in
the analyzed Field of View (FoV).
Prior to analysis, filter areas of 100x100 um? were pre-implanted with primary ions beam Cesium
(Cs™) at 100 pA for 5 minutes. The number of pixels per single-cell can be tuned by changing the size
of analyzed area keeping constant the raster size (512x512 pixels); therefore, 40x40, 30x30 and
20%20 pm? area were analyzed for the optimization. The dwell time was fixed to 2 ms/pixel for the
whole optimization procedure.
The settings with 2 pA PI current was tested (Fig. S1) first to verify the influence of pixel number per
single cell on the precision of single-cell derived isotope fraction. The best precision of isotope
fraction at single-cell level was achieved for 2 pA PI current with 20x20 pm?2 analysis area
(0.44+0.06%, mean of single-cell o over isotope-fraction for all single-cells measured) due to
maximal number of pixels per single-cell obtained with the smallest pixel size (39 nm versus 58 nm
and 78 nm with 30 um and 40 um raster, respectively). With 2 pA PI current and 40x40 umz2 analysis
area, the relative error of single-cell isotope fraction reached 1.39+0.24%; therefore, this size of
analysis area was not considered for further optimization. For the 30x30 um?2 analysis area, the
relative error was 0.79+0.16% with 2 pA PI current.
Pl beam current of 4 pA (Fig. S2) with 30x30 um? analysis area resulted in 0.88+0.14% precision of
isotope fraction at single-cell level. The analysis settings with 4 pA Pl current and 20x20 pm?
analysis area were selected providing a considerable analysis speed and 0.37+£0.05% relative error of
isotopic content at single-cell level. In this condition, the highest pixel density with sufficient
secondary ion counts per pixel (consequently better ion-count statistics for single-cells) and a
considerable quality of Pl beam focusing were achieved.
NanoSIMS data acquired for the optimization were processed with LANS (Polerecky et al., 2012);
the single-cell Rol were drawn manually with the 2C1*N- map representing the biomass distribution.
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The *C fraction (D13-x100 [at%]) was evaluated from the ratio of C2” molecular ion counts (R =

N13c120/N1zp12¢) using the following expression:

N13,12./N12;12,

D13, = = a:
c— {2 X(N13612C/N12C12C)+1} {2 X(RC2+1)}.
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Supplementary Figure S1. Single-cell analysis of P. stutzeri cells. On the left panel mean value +
SD achieved with three different sizes of sample areas analyzed with 2 pA primary ion current are
shown. On the right panel, single-cell values of *C content are shown; symbols represent the 3C
fraction [at%] and its error (xo, error bar) for each single-cell.
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Supplementary Figure S2. Comparison of single-cell values of 3C content and focus quality for
30x30 pm?2 and 20x20 um?2 sample area (FoV) analyzed with 4 pA current of the primary Cs* ion
beam.
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2. Zipfian fit of normally-distributed data

The approximation of an experimental rank-activity distribution with K4(r; g, s, d, n) (EQ. 25 in the
main text) provides a slope value s (Differentiation Tendency Index, DTI) characterizing the
tendency of single-cell to differentiate in their anabolic activity. It has been assumed that when the
rank-activity distribution of all cells inside a monoclonal population fit a single slope, then the cells
follow unimodal activity. To prove the feasibility to measure heterogeneity in cellular activity with
the slope of rank-activity distribution, simulated normal distributions (Figs. S3-A, S4) were
approximated with the Zipfian function (Eqg. 25).
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Supplementary Figure S3. Frame A: normal distribution simulated with fixed mean and different
Sigma values. Frame B shows the DTI values derived as rank distribution slope with Zipfian fit
(s £ As, blue rectangles), corresponding CV values (red circles) and CV/DTI ratio calculated for

different o values with fixed the centroid (mean value) fixed at 75.



2.1. Correlation between Zipfian slope (DTI, s) and Coefficient of Variation (CV)

The DTI values, derived for the simulated normal distribution with fixed mean and different o
(Sigma; Standard Deviation, SD), were shown to reproduce the trend of corresponding CV values
(Fig. S3-B) providing a proof for DTI as heterogeneity index.

2.2. Invariance of Zipfian slope to population size

Normal cellular activity distributions were simulated with different population size (1000, 200 and 50
cells; Fig. S4) and the rank-activity distribution of simulated data were approximated with Zipfian
function (Fig. S5). OriginPro 2017 software was used for data simulation and approximation of rank-
activity distributions.
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Supplementary Figure S4. Histograms plot of simulated normally distributed populations in single

cell anabolic activity. The mean value and the SD (o) were kept the same for different population
size.
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The approximation delivers the slope values (tables in Fig. S5) s=0.1624+0.0006 for 1000 cells,
5=0.1631+0.0011 for 200 cells and s=0.1619+0.0082 for 50 cells proving the invariance of s to the
population size.
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Supplementary Figure S5. Zipfian approximation of rank-activity distributions of cellular activity
simulate for different population size (1000, 200 and 50 cells).



3. Zipfian approximation of rank-activity distribution
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Supplementary Figure S6. Rank-activity distributions and multi-component Zipfian approximation
of experimental data. Rank-activity distributions of P. putida (frame A) and P. stutzeri (frame B) at
Time 0 approximated with multi-component Zipfian function (Eq. 26 in the main text). The tables on
the right side show the fitted slope values (s + As) and R-squared representing fit accuracy.
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Supplementary Figure S7. Rank-activity distributions and multi-component Zipfian approximation
for P. putida at different time points.



When cells reveal multimodal activity, their rank-activity distribution reveals steps assigned to
subpopulations belonging to the same monoclonal population. Fit of a multimodal rank activity
distribution with single-component Zipfian function (Eg. 25 in the main text) results in large relative
[%]) error in slope value (As/s x 100 [%]) 1.9%, 17.2%, 3.7% for the 15, 30 and 60 minutes
incubation time, respectively; Fig. S8). In such a case the multi-component Zipfian function has to be
applied for data fitand CDTI (S + AS, Egs. 27, 28 in the main text) has to be derived to quantify the

heterogeneity of entire population.
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Supplementary Figure S8. Rank-activity distributions and single-component Zipfian approximation
for P. stutzeri at different time points. The tables show the results of single-component Zipfian fit.
The inset shows the s + As obtained with the fit at different time points.
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Supplementary Figure S9. Rank-activity distributions and multi-component Zipfian approximation
for P. stutzeri at different time points. At time point 60 minutes (frame C), 4 cells were initially
assigned to a low-SDT subpopulation. However, such cells, distributed over one order of magnitude
of their Ka values, could not be further considered as a single subpopulation and were therefore
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excluded from the calculation of the corresponding CDT]I value.
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Supplementary Figure S10. The comparison of heterogeneity in anabolic activity of P. putida and P.
stutzeri strains represented as CDTI trends over time.
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Supplementary Figure S11. Transformation of flow cytometric data prior to Zipfian approximation. The procedure
was exemplarily visualized on the data acquired on P. putida cells at 0 h time point. 10° DAPI-stained cells were
measured in logarithmic amplification mode and visualized in a forward scatter intensity (FSC, related to cell size)
vs. DAPI fluorescence intensity (related to DNA content) dot plot (Frame A). Standard particle beads were measured
with every sample to secure instrument stability. The events in the cell-gate were exported from the original .fsc files
with the logarithmic scales of both axis evenly distributed into 1024 channels ranging from 0 to 1023 (Frame B). The
boundaries between the five gates G1 to Gx were defined according to the local minima in the DAPI- fluorescence
intensity distribution. In the last step, the range of DAPI-fluorescence intensity scale was confined within the cell-
containing channels (channels: 375 to 975). This range was then represented on a warped scale to enhance resolution
of the lower channel numbers where the majority of cells where measured (Frame C).
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Supplementary Figure S12. Data of flow cytometry represented in dot plot, histogram and rank
distribution of DAPI fluorescence intensity approximated with the multicomponent Zipfian function.
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