
Supplementary Information 

 

Evaluation of CORDEX regional climate models in simulating extreme dry 

spells in Southwest China 

 

Tao Feng1,2, Zachary Tipton3, Lan Xia1,2, Youli Chang1,2 

 

1. Department of Atmospheric Sciences, Yunnan University,  

Kunming 650091, China 

2. Key laboratory of atmospheric environment and processes in the 

boundary layer over the low-latitude plateau region, Yunnan University,  

Kunming, 650091, China 

3. Department of Biological Sciences, University of Arkansas, Fayetteville 

Arkansas 72701, United States 

 

Revised 

October 10, 2019 

 

 

 

Corresponding author: Tao Feng, Email: taofeng@ynu.edu.cn 

            Youli Chang, Email: ylchang@ynu.edu.cn  

mailto:taofeng@ynu.edu.cn
mailto:ylchang@ynu.edu.cn


Part A. Model evaluation metrics 

To evaluate RCM performance in simulating extreme dry spells, full assessments 

of simulated AMDSL intensity, frequency, and spatial distribution are needed. In this 

study, we focused on tail distribution characteristics of the extreme AMDSL; the spatial 

correlation coefficient is mainly employed to interpret the five RCMs' ability to 

simulate the intensity of AMDSL and spatial consistency.  

Spatial correlation – often measured as a pattern correlation coefficient (PCC) – 

indicates the strength and direction of a linear relationship between two fields (for 

example model simulation and observation). The best known being the Pearson 

correlation coefficient, which is obtained by dividing the covariance of the two 

variables by the product of their standard deviations. A larger positive value of a 

correlation coefficient indicates a stronger positive correlation between model 

simulation and observation.  
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where 𝑀𝑘 and 𝑂𝑘 indicate the model pattern of interest and the corresponding 

observed pattern, respectively. 𝑁  denotes the number of model grid cells or 

observation points used. 

To summarize the spatial consistency and magnitude of RCM variance against 

observations in a simple way, we used Taylor diagrams to evaluate the performance of 

the individual extreme index in each RCM simulation (Taylor, 2001).  

A Taylor diagram is a polar-style graph including the correlation coefficient (𝑅) 
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between simulations and observations, the centered RMSE (𝐸′ ), and the standard 

deviation of RCM simulation and observations, respectively.  
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The radial distance from the origin reflects STD, the cosine of the azimuth angle 

gives R, and the radial distance from the observed point is proportional to the centered 

RMSE difference between simulations and observations. Taylor diagrams are 

particularly beneficial in evaluating the relative accuracy of different complex models. 
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Furthermore, standardized model variance is applied to avoid different units’ cross 

variables.  The comparison between RCM simulations and observations is finally 

quantified by spatial correlation ( 𝑅 ), root-mean-square difference ( 𝐸′/𝜎𝑂 ), and 

magnitude of variations represented by the ratios of modeled-to-observed standard 

deviation (𝜎𝑀/𝜎𝑂 ) across the grid cells of the observation data set. The closer the 

correlation is to the horizontal axis and the ratio nearer 1.0, the better the model 

reproduces observation values.  
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Part B. The generalized extreme value theory 

Extreme weather and climate events are considered as a major source of risk for 

all human societies. The definition of an extreme weather event is an event that is rare 

at a particular place and time of year. Definitions of rare vary, and a statistical 

distribution or a sample distribution is required.  

As mentioned in introduction section, the AMDSL was defined as annual 

maximum days without precipitation in this study. We assumed that the AMDSL is 

distributed according to a GEV distribution. The probability distribution function (PDF) 

and cumulated distribution function (CDF) for GEV distribution are given by  
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where 𝑥  is the extracted block maxima and 𝜉 (−∞ < 𝜉 < ∞) is the 

location parameter determining position, 𝛼 (𝛼 > 0) is the scale parameter present in 

the width of the PDF, 𝑘 is the shape parameter describing the form of the distribution 

decay in the tail. When the shape parameter 𝑘 > 0, the distribution is said to have a 

heavy tail with the density function decaying with a power law and is called Frechet 

distribution. When the shape parameter 𝑘 < 0, the distribution has a bounded upper 

tail called a Weibull distribution. The 𝑘 = 0 is referred to as exponential decay called 

a Gumbel distribution. Supplementary Figure 1 shows the physical meaning of the three 

GEV parameters. Review of recent developments in the statistical theory of extreme 
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values is given in Coles et al (2001).  

 

Supplementary Figure.1 A schematic of the generalized extreme value (GEV) theory. 

 

After fitting the GEV distribution to the AMDSL, we can estimate how often the 

extreme quantiles occur with a certain return level. The T-year return value is defined 

as a value which is expected to be equaled or exceeded on average once every interval 



of 𝑇  years, and 1/𝑇  is the return probability, respectively. 𝑋𝑇  are estimated by 

inverting the GEV cumulative distribution function as follow: 

𝐹(𝑋𝑇;  𝜉, 𝛼, 𝑘) = 1 − 1/𝑇 

𝑋𝑇 =
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In our current study, we calculated return values for a 20-yr return period of 

AMDSL at each model grid point and observation point. 
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Part C. Theory of L-Moment 

The L-moments method is introduced by Hosking (1990) and is based on 

probability weighted moments (PWMs). Compared to the conventional moments, being 

linear functions of the data, L-moments are less sensitive to sampling variability or 

measurement errors in extreme data values, and therefore may be expected to yield 

more accurate and robust estimates of the characteristics or parameters of an underlying 

probability distribution (Hosking 1990). Thus, the estimated parameters via L-moment 

methods are more robust. Furthermore, L-moments have less bias in estimation and 

their asymptotes are closer to the normal distribution in finite samples. L-moments are 

defined as follows (Hosking and Wallis 2005): 

Assuming 𝐹(𝑥) is the distribution function of random variable 𝑋, 𝑋1:𝑛 ≤ ⋯ ≤

𝑋𝑛:𝑛 are the order statistics of the samples. The L-moments of 𝑟 is 
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where 𝑋𝑘:𝑛 denotes the 𝑘𝑡ℎorder statistic (𝑘𝑡ℎ smallest value) in an independent 

sample of size 𝑛 from the distribution of 𝑋 while 𝐸 denotes the expected value. In 

particular, the first four population L-moments are: 

{
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To standardize the high order L-moments, the L-moments ratio is defined as 

𝜏𝑟 =
𝜆𝑟
𝜆2
 , 𝑟 = 3,4, … 
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𝜏3 and 𝜏4 are the L-skewness and L-kurtosis, respectively, which are powerful 

tools to describe extreme precipitation distribution characteristics.  

 

  



Part D. Model bias diagnosis 

 

Supplementary Figure.2 Spatial distributions of the GEV location parameter of the 

AMDSL. (a) CN05, (b) APHRO; and five RCMs: (c) SNU-WRF, (d) KNU-RegCM4, 

(e) SNU-MM5, (f) NIMR-HadGEM3, and (g) YSM-RSM. 



 

Supplementary Figure.3 Scatter plots of relative model bias of the climatological 

AMDSL against relative model bias of the dry day’s occurrence. (a) SNU-WRF, (b) 

SNU-MM5, (c) KNU-RegCM4, (d) NIMR-HadGEM3, and (e) YSM-RSM. 

 

 

 

 

 



Supplementary Table.1 Name, acronym, and equation of the cumulative distribution 

function (CDF) of four extreme models used in the assessment. 

 

Distribution 

function 

Acronym CDF Equation 

Generalized 

extreme value 

GEV 𝐹(𝑥) = 𝑒𝑥𝑝(−𝑒𝑥𝑝(−𝑦)), where:  

𝑦 = −𝑘−1𝑙𝑛 (
1−𝑘(𝑥−𝜉)

𝛼
) if 𝑘 ≠ 0 

𝑦 = (𝑥 − 𝜉)/𝛼 if 𝑘 = 0 

Pearson type III 

(PE3) 

PE3 
𝐹(𝑥) = 𝑓𝑟𝑎𝑐(𝑒

𝑘𝑦−𝑦2

2 )(𝛼(2𝜋−2)), where:  

𝑦 = −𝑘−1𝑙𝑛 (
1−𝑘(𝑥−𝜉)

𝛼
) if 𝑘 ≠ 0 

𝑦 = (𝑥 − 𝜉)/𝛼 if 𝑘 = 0 

Three-parameter 

lognormal 

LN3 

𝐹(𝑥) = 𝛷 (
𝑙𝑛(𝑥 − 𝛾) − 𝜇

𝛼
) 

Generalized Pareto GPD 𝐹(𝑥) = 1 − 𝑒𝑥𝑝(−𝑦), where: 

𝑦 = −𝑘−1𝑙𝑛 (
1−𝑘(𝑥−𝜉)

𝛼
) if 𝑘 ≠ 0 

𝑦 = (𝑥 − 𝜉)/𝛼 if 𝑘 = 0 

Note: In the above equations, 𝜉 is the location parameter, 𝛼 is the scale parameter, 

and 𝑘 represents the shape parameter of the cumulative distribution function, where 

Φ is the Laplace Integral for three-parameter lognormal distributions. 

 

Supplementary Table.2 Name, acronym, and L-kurtosis estimator of four extreme 

models used in the assessment. 

 

Distribution 

function 

Acronym L-kurtosis estimator 

Generalized 

extreme value 

GEV 𝜏4 = 0.10701 + 0.11093𝜏3 + 0.84838𝜏3
2 −

0.06669𝜏3
3 + 0.00567𝜏3

4 − 0.04208𝜏3
5 +

0.03763𝜏3
6  

Pearson Type III PE3 𝜏4 = 0.1224 + 0.30115𝜏3
2 + 0.95812𝜏3

4 −

0.57488𝜏3
6 + 0.19383𝜏3

8  

Three-parameter 

lognormal 

LN3 𝜏4 = 0.12282 + 0.77518𝜏3
2 + 0.122779𝜏3

4 −

0.13638𝜏3
6 + 0.11368𝜏3

8  

Generalized Pareto GPD 𝜏4 = 0.20196 + 0.95924𝜏3
2 − 0.20096𝜏3

3 +

0.04061𝜏3
4  

 

 



Supplementary Table. 3 Abbreviations 

 

Abbreviation Standard Name 

AMDSL Annual Maximum Dry Spell Length 

CQ Chongqing direct-controlled municipality, China 

EASM East Asian Summer Monsoon 

ESM Earth System Model 

GCM Global Climate Model 

GX Guangxi Province, China 

GZ Guizhou Province, China 

ISM Indian Summer Monsoon 

LLH Low-latitude highlands 

MLE Maximum-Likelihood Estimator 

MRB Mekong River Basin 

PCC Pattern Correlation Coefficient 

PDF Probability Distribution Function 

PWM Probability Weighted Moments 

RCM 

SB 

SC 

SETP 

Regional Climate Model 

Sichuan Basin 

Sichuan Province 

southeastern Tibetan Plateau 

SCV 

TMC 

Southwest China Vortex 

Traverse Mountain Chain 

YN Yunnan Province, China 
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