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1 SUPPLEMENTARY FIGURES
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Figure S1. Classification accuracy and mean squared error (MSE) computed using ten stimuli from the
second input stream, 𝑆′. There are no significant differences between local and downstream integration.
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Figure S2. Silhouette score quantifying cluster separability in the XOR task. Scores are calculated in the
space spanned by the first ten PCs, using the low-pass filtered spike trains as the main state variable in the
analysis.
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Figure S3. Performance on the XOR task (point-biserial correlation coefficient), computed using the
low-pass filtered spike trains as the main state variable. The differences in performance are statistically
significant, with local integration proving to be consistently more beneficial. These results are in agreement
with the values computed using the membrane potentials as state variables.
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Figure S4. Performance on the XOR task for networks with non-scaled feed-forward projections between
𝑀0 → 𝑀1 and 𝑀 ′

0 → 𝑀1 in the downstream integration scenario (see Figure 6B in the main text). The
denser connectivity does not significantly alter the relative differences between local and downstream
integration.
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2 SUPPLEMENTARY TABLES

A: Model Summary
Populations Multiple modules, each one composed of 1 excitatory and 1 inhibitory

sub-population
Topology None
Connectivity Sparse, random recurrent connectivity with random or topographically

structured feed-forward projections
Neuron Model Leaky integrate-and-fire, fixed voltage threshold, fixed absolute refractory

time, no adaptation
Synapse Model Conductance-based, exponential
Plasticity None
Input Stochastic background spikes and inhomogeneous Poisson spikes onto 10%E

and 10% I neurons
Measurements Spiking activity, membrane potentials

B: Populations
Name Elements Size
E𝑖, E′

0 iaf_cond_exp 8000
I𝑖, I′0 iaf_cond_exp 2000

C: Neuron Models
Name Leaky integrate-and-fire neuron (iaf_cond_exp)
Subthreshold Dynamics if (𝑡 > 𝑡* + 𝜏ref)

𝐶m
𝑑𝑉𝑖
𝑑𝑡 = gleak(𝑉rest − 𝑉𝑖(𝑡)) + 𝐼E𝑖 (𝑡) + 𝐼I𝑖 (𝑡) + 𝐼x𝑖 (𝑡)

else

𝑉 (𝑡) = 𝑉reset
Synaptic Transmission

𝐼 syn
ij (𝑡) = 𝑔 syn

ij (𝑉 syn − 𝑉𝑖(𝑡))

Spiking If 𝑉 (𝑡−) < 𝑉th OR 𝑉 (𝑡+) ≥ 𝑉th
1. set 𝑡* = 𝑡 2. emit spike with time stamp 𝑡*

D: Synapse Models
Synaptic Conductance

𝑑𝑔ij(𝑡)
𝑑𝑡 = −𝑔ij(𝑡)

𝜏𝛽
+ 𝑔𝛽

∑︀
𝑡𝑗
𝛿(𝑡− 𝑡𝑗 − 𝑑)

E: Input
Type Target Description
poisson generator E0, I0 Total rate 𝜈X · KX
poisson generator E𝑖, I𝑖 for 𝑖 > 0 Total rate 0.25 · 𝜈X · KX

inhomogeneous poisson generator
E
(𝑘)
0 , I

(𝑘)
0 for 𝑆𝑘 ∈ 𝑆 Inhomogeneous Poisson process

with rate 𝜈𝑠𝑡𝑖𝑚, changing every
200 msE

′(𝑗)
0 , I

′(𝑗)
0 for 𝑆′

𝑗 ∈ 𝑆′

F: Measurements
Spiking activity, membrane potentials

Table S1. Tabular description of network model after Nordlie et al. (2009).
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A: Populations
Name Value Description
𝑁E 8000 Excitatory population size in each module
𝑁 I 2000 Excitatory population size in each module

B: Connectivity
Name Value Description
𝑑 1.5 ms Synaptic transmission delay
𝑔E 1 nS Excitatory synaptic conductance
𝑔I 𝛾𝑔E nS Inhibitory synaptic conductance
𝛾 16 Scaling factor for the inhibitory synapses
𝜖 0.1 Baseline connection probability

𝑝x
𝜖 Connection probability for background noise input in 𝑀0
0.25𝜖 Scaled connection probability for background input in 𝑀𝑖, 𝑖 > 0

𝑝ff 0.75𝜖 Feed-forward connection probability within topographic maps
B: Neuron Model

Name Value Description
𝐶m 250 pF Membrane capacitance
𝐸𝐿 −70 mV Resting membrane potential
𝜏m 15 ms Membrane time constant
𝑉th −50 mV Membrane potential threshold for action-potential firing
𝑉reset −60 mV Reset potential
𝜏ref 2 ms Absolute refractory period
𝑔L 16.7 nS Leak conductance

C: Synapse Model
𝜏E 5 ms Synaptic decay time constant for excitatory synapses
𝜏I 10 ms Synaptic decay time constant for inhibitory synapses
𝑉E 0 mV Excitatory reversal potential
𝑉I −80 mV Inhibitory reversal potential

Table S2. Summary of all the model parameters.

3 SUPPLEMENTARY DATA

The code package provided as a supplement (Supplementary File 1) implements project-specific
functionality to NMSAT (Duarte et al., 2017), which is a tailor-made Python package that provides
a generic set of tools to build, simulate and analyse neuronal microcircuit models with any degree of
complexity, as exemplified in this study. It provides a high-level wrapper for PyNEST (used as the core
simulation engine). To use the provided software:

1.Setup - After ensuring that all dependencies are satisfied, NMSAT1 version 0.2 needs to be downloaded
and setup, as explained in the provided documentation2.

2.Project code - The code package for this project should then be extracted onto the projects/ folder.
The provided code has the following structure:

1 https://github.com/rcfduarte/nmsat
2 https://rcfduarte.github.io/nmsat/
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state_transfer/
parameters/

preset/
computations/
read_data/

where read_data contains the scripts necessary to read, analyse and plot the data. The main simulations
are run using combinations of parameters files with the corresponding computation function (see Table
S2 for a description of the experiments provided and the standard use case in the code documentation for
instructions).

3.Running a simulation - Specific experiments can be run from scratch using the provided code. Modify
the specific parameters as desired (paying particular attention to the system specificities) and execute the
experiment:

$ python main.py -f {parameters_file} -c {computation} --extra {computation_parameters}

The code package is also available online at the following Open Science Framework repository:
https://osf.io/nywc2/.
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Experiment Parameters file (.py) Computation

Stimulus classification in random sequential
hierarchies (Fig.2 A,B; Fig.4) random sequential class

stimulus processing

Stimulus classification in topographic
sequential hierarchies (Fig.2 A,B; Fig.4) topographic sequential class

Modulating stimulus amplitude in random
networks (Fig.2 E) random modulate amplitude

Modulating connection density within
topographic maps (Fig.2 F) topographic modulate density

Influence of direct connections 𝑀0 ⇒ 𝑀1

(Fig.2 C,D) random direct connections remove direct connections

Population activity statistic in the noise-driven
scenario (Fig.3) stats noise

char population activityPopulation activity statistic in the random,
stimulus-driven scenario (Fig.3) stats random

Population activity statistic in the random,
stimulus-driven scenario (Fig.3) stats topographic

Stimulus sensitivity and memory capacity in
random networks (Fig.5) random sequential memory

stimulus processing memoryStimulus sensitivity and memory capacity in
topographic networks (Fig.5) topographic sequential memory

Multi-stream classification and XOR in
random networks with local integration (Fig.6
C, and Fig7. A,B,C)

random integrate local

stimulus integrate

Multi-stream classification and XOR in
random networks with downstream integration
(Fig.6 C, and Fig7. A,B,E)

random integrate downstream

Multi-stream classification and XOR in
topographic networks with local integration
(Fig.6 C, and Fig7. A,B,D)

topographic integrate local

Multi-stream classification and XOR in
topographic networks with downstream
integration (Fig.6 C, and Fig7. A,B,F)

topographic integrate downstream

XOR with mixed input in random networks
(Fig.8 C,D,E) random mixing downstreamXOR with mixed connectivity in random
networks (Fig.8 F,G,H)

Table S3. Summary of all the numerical experiments that can be run using the provided source code.
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