Human cerebral organoids and fetal brain tissue share proteomic similarities: enabling alternative models to study psychiatric disorders

Juliana Minardi Nascimento^{1,2}, Verônica M Saia-Cereda¹, Rafaela C. Sartore^{2,3}, Rodrigo Madeiro da Costa², Clarissa S. Schitine^{4,5}, Hercules Rezende Freitas^{5,6}, Michael Murgu⁷, Ricardo A. de Melo Reis⁵, Stevens K Rehen^{2,4*}, Daniel Martins-de-Souza^{1,8,9*}

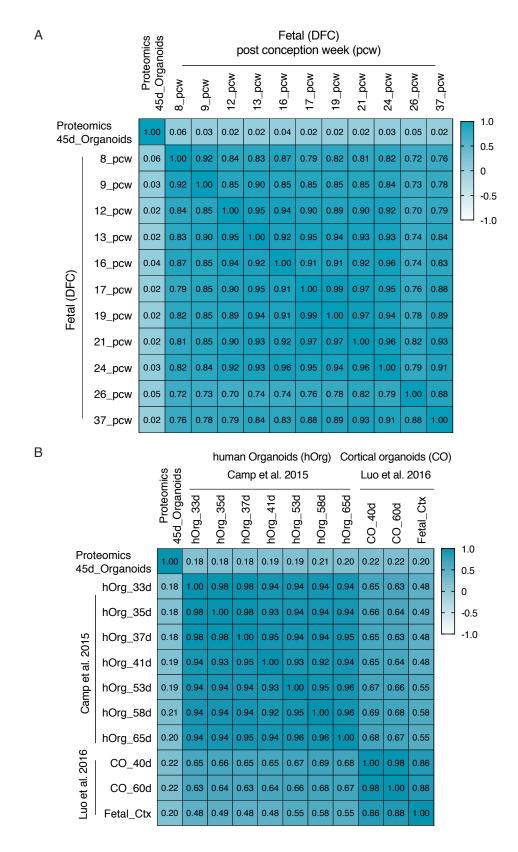
Supplementary information

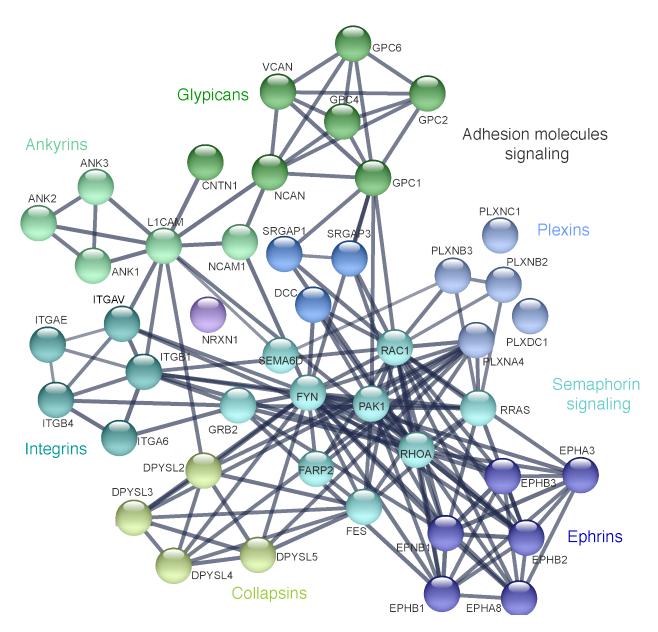
Supplementary Table 1: Protein expression of PSC-derived, 45-day cerebral organoids.

(Excel file)

Supplementary Table 2: Enriched proteins of glutamatergic and dopaminergic synapse

(Excel file)


Supplementary Figure 1, 2 and 3


C Common proteins of 16 week VZ, IZ, SP and cortex to organoids

	GO Terms	FDR
Biological	Cell -cell adhesion	1.22E-40
Processes	mRNA splicing	5.84E-28
	Regulation of mRNA stability	9.71E-28
	Translational initiation	2.62E-23
Cellular	Extracellular exosome	1.48E-162
Compartment	Cytosol	3.26E-110
	Myelin sheath	7.03E-68
	Membrane	1.59E-60
Molecular Function	Poly(A) RNA binding	1.69E-109
	Protein binding	1.70E-58
	Cadherin binding involved in cell-cell adhesion	1.17E-45
	RNA binding	1.02E-36

SUPPLEMENTARY FIGURE 1: Comparison of cerebral organoid proteomes with developing brain sub-compartments (ventricular zone, VZ; intermediate zone, IZ; subplate, SP; cortex). (A) Spearman correlation of 45-day cerebral organoid proteomes to 16-20 weeks (VZ, IZ, SP, and cortex proteomes). (B) Venn diagram of proteins commonly found in 45-day cerebral organoids and 16-week developing human brain areas. (C) Gene ontology of the proteins found in common to the 16-week (VZ, IZ, SP, and cortex) proteomes and cerebral organoids proteomes.

SUPPLEMENTARY FIGURE 2: Comparison of cerebral organoid proteomes with transcriptomics of the developing brain and cortical cerebral organoids. Spearman correlation of 45-day cerebral organoid proteome compared to **(A)** human fetal 8-37 post conceptional week, dorsolateral prefrontal cortex (DFC) and **(B)** human cortical organoids of 33 to 65 days *in vitro*.

SUPPLEMENTARY FIGURE 3: Interactive organizational network of proteins from 45-day cerebral organoids. Molecular relationships between proteins found in cerebral organoids from the dataset are based on the STRING database (https://string-db.org/). Groups of proteins are separated by different colors, as indicated.