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Supplementary Material

The code base is publicly available on Github - Link

1 Network Architecture

Notation:- Conv denotes the 2D Spatial Convolutional layer. ReLU denotes the Rectified Linear Unit
Layer that adds non-linearity to the network. MaxPool denotes the 2D Spatial Max Pooling layer.
FullyConn denotes a Fully Connected layer, also known as the linear layer of the network.

1.1 TF maps

https://github.com/BioSigSystLab/EEG-exercise-DeepLearning


(a) Basic Architecture without adversary

(b) Modified Architecture with adversary to avoid subject discrimination

Figure S1: Deep Network Architecture. The initial choice of architecture (without any adversary)
gives good subject prediction accuracy from features extracted by the Base CNN. Therefore, a subject
discriminator of roughly the same model capacity as the Top NN is added. The subject discrimination
acts as a regularizer while training and avoids the Base CNN from learning subject specific features.

Layer Type Maps and Neurons Filter Size
0 Input 1M × 64 × 55N -
1 Conv 6M × 64 × 28N 1×5
2 ReLU 6M × 64 × 28N -
3 MaxPool 6M × 64 × 14N 1×2
4 Conv 16M × 64 × 14N 1×5
5 ReLU 16M × 64 × 14N -
6 MaxPool 16M × 64 × 7N 1×2

Table S1: Network architecture used for EEG feature extraction network (Base CNN). The output of
the network is a tensor of dimensions 16× 64× 7.

Layer Type Maps and Neurons Filter Size
0 Input 16M × 64 × 7N -
1 Flatten 7168N -
2 Dropout (p=0.5) - -
3 FullyConn 8N 1×1
4 ReLU 8N -
5 FullyConn 2N 1×1

Table S2: Network architecture used for group discrimination network (Top NN). The output of the
network is a vector of dimension 2, values corresponding to the probability that the data tuple belongs
to particular class.
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Layer Type Maps and Neurons Filter Size
0 Input 16M × 64 × 7N -
1 Flatten 7168N -
2 Dropout (p=0.5) - -
3 FullyConn 8N 1×1
4 ReLU 8N -
5 FullyConn 25N 1×1

Table S3: Network architecture used for subject discrimination network (adversary). The output of
the network is a vector of dimension 25, values corresponding to the probability that the data tuple
belongs to particular subject.
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1.2 Topographical maps

Layer Type Maps and Neurons Filter Size
0 Input 3M × 64 × 64N -
1 Conv 16M × 32 × 32N 5×5
2 ReLU 16M × 32 × 32N -
3 MaxPool 16M × 16 × 16N 2×2
4 Conv 32M × 16 × 16N 5×5
5 ReLU 32M × 16 × 16N -
6 MaxPool 32M × 8 × 8N 2×2
7 Conv 64M × 8 × 8N 3×3
8 ReLU 64M × 8 × 8N -
9 MaxPool 64M × 4 × 4N 2×2

Table S4: Network architecture used for EEG feature extraction network (Base CNN). The output of
the network is a tensor of dimensions 64× 4× 4.

Layer Type Maps and Neurons Filter Size
0 Input 64M × 4 × 4N -
1 Flatten 1024N -
2 Dropout (p=0.5) - -
3 FullyConn 8N 1×1
4 ReLU 8N -
5 FullyConn 2N 1×1

Table S5: Network architecture used for group discrimination network (Top NN). The output of the
network is a vector of dimension 2, values corresponding to the probability that the data tuple belongs
to particular class.

Layer Type Maps and Neurons Filter Size
0 Input 64M × 4 × 4N -
1 Flatten 1024N -
2 Dropout (p=0.5) - -
3 FullyConn 8N 1×1
4 ReLU 8N -
5 FullyConn 25N 1×1

Table S6: Network architecture used for subject discrimination network (adversary). The output of
the network is a vector of dimension 25, values corresponding to the probability that the data tuple
belongs to particular subject.
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2 Train Validation split details

Fold CON subject EXE subject
1 12 25
2 2 15
3 8 19
4 3 14
5 1 22
6 12 14
7 1 20
8 9 17
9 12 18
10 4 15

Table S7: List of subjects in the validation set for each fold of 10-fold cross-validation setup.

3 Training curves

3.1 Time-Frequency Maps

Hyperparameter Value
Learning Rate 0.002
Learning Rate Decay 0.0001
Weight Decay 0.001

Table S8: List of hyperparameters used for training the networks on TF maps.
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(a) Group prediction loss (λ = 0) (b) KL divergence (λ = 0) (c) Subject prediction loss (λ = 0)

(d) Group prediction loss (λ = 15) (e) KL divergence (λ = 15) (f) Subject prediction loss (λ = 15)

(g) Group prediction loss (λ = 13) (h) KL divergence (λ = 13) (i) Subject prediction loss (λ = 13)

Figure S2: Time-Frequency Maps Training curves for three different weight values to the subject
predictor regularizer.
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3.2 Topographical Maps

Hyperparameter Value
Learning Rate 0.001
Learning Rate Decay 0.001
Weight Decay 0.03

Table S9: List of hyperparameters used for training the networks on Topographical maps.

(a) Group prediction loss (λ = 0) (b) KL divergence (λ = 0) (c) Subject prediction loss (λ = 0)

(d) Group prediction loss (λ = 10) (e) KL divergence (λ = 10) (f) Subject prediction loss (λ = 10)

(g) Group prediction loss (λ = 5) (h) KL divergence (λ = 5) (i) Subject prediction loss (λ = 5)

Figure S3: Topographical Maps Training curves for three different weight values to the subject
predictor regularizer.
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