| Table S1. Physico-chemical properties of soils, plant biomass and site weather from the experimental |
|------------------------------------------------------------------------------------------------------|
| plots with different summer-active perennial grasses at Karoonda, South Australia during the 2014    |
| and 2015 plant growth period.                                                                        |

| Property                 | Digitaria     | Panicum       | Rhodes grass  |  |  |
|--------------------------|---------------|---------------|---------------|--|--|
| pH-water                 | 7.11          | 6.94          | 6.93          |  |  |
| Organic C (%)            | 0.89 (0.08)   | 0.70 (0.04)   | 0.90 (0.08)   |  |  |
| Total N (%)              | 0.05 (0.007)  | 0.03 (0.005)  | 0.05 (0.007)  |  |  |
| C:N ratio                | 16.5 (0.7)    | 20.4 (1.5)    | 16.7 (0.5)    |  |  |
| Dissolved Org C (ug C/g) | 57.2 (0.7)    | 50.6 (2.3)    | 64.7 (8.2)    |  |  |
| Mineral N (ug N/g)       | 3.8 (0.08)    | 2.4 (0.0)     | 2.5 (0.3)     |  |  |
| Sand (%)                 | 74.7 (0.9)    | 76.2 (1.9)    | 76 (0.7)      |  |  |
| Clay (%)                 | 6.1 (0.6)     | 6.9 (0.6)     | 6.8 (0.4)     |  |  |
| CEC (cmol(+)/kg          | 3.6 (0.3)     | 3.5 (0.4)     | 3.5 (0.4)     |  |  |
| Plant Biomass (t/ha)     |               |               |               |  |  |
| Dec-13                   | 0.116 (0.049) | 0.129 (0.028) | 0.183 (0.022) |  |  |
| Apr-14                   | 1.045 (0.318) | 1.447 (0.358) | 0.682 (0.217) |  |  |
| Jan-15                   | 0.248 (0.036) | 0.705 (0.101) | 0.683 (0.063) |  |  |
| Apr-15                   | 0.356 (0.088) | 0.863 (0.088) | 0.713 (0.104) |  |  |
| Rainfall (mm)            |               |               |               |  |  |
| Jan-April 2014           |               | 151           |               |  |  |
| Jan-April 2015           |               | 121           |               |  |  |
| Max Temp (oC)            |               | 29.1 (4.6)    |               |  |  |
| Min Temp (oC)            |               | 12.5 (2.4)    |               |  |  |

Table S2. Additional topological properties of molecular ecological networks for nifH gene harboring bacterial communities.

| Network Indexes                               | Roots                 | Loof                             | Stom                  | All parts |
|-----------------------------------------------|-----------------------|----------------------------------|-----------------------|-----------|
| Average path distance (CD)                    | 6.060                 | 0.799                            | 9 1 2 2               |           |
| Condesia officianzy (E)                       | 0.909                 | 9.788                            | 0.125                 | 4.552     |
| Geodesic efficiency (E)                       | 0.174                 | 0.127                            | 0.15                  | 0.257     |
| Harmonic geodesic distance (HD)               | 5.742                 | 7.9                              | 6.684                 | 4.226     |
| Maximal degree                                | 18                    | 17                               | 23                    | 27        |
| Nodes with max degree                         | OTU_2127;<br>OTU_2924 | OTU_2509                         | OTU_0096              | OTU_0293  |
| Centralization of degree (CD)                 | 0.021                 | 0.017                            | 0.026                 | 0.069     |
| Maximal betweenness                           | 20592.558             | 37135.673                        | 64591.116             | 7924.244  |
| Nodes with max betweenness                    | OTU_2831              | OTU_0125                         | OTU_0096              | OTU_0293  |
| Centralization of betweenness (CB)            | 0.098                 | 0.12                             | 0.24                  | 0.127     |
| Maximal stress centrality                     | 573641                | 4054851                          | 2964658               | 80019     |
| Nodes with max stress centrality              | OTU_0272              | OTU_4485                         | OTU_1729              | OTU_0293  |
| Centralization of stress centrality (CS)      | 2.673                 | 13.291                           | 11.02                 | 1.296     |
| Maximal eigenvector centrality                | 0.285                 | 0.306                            | 0.312                 | 0.374     |
| Nodes with max eigenvector centrality         | OTU_2127;OTU_<br>2924 | - OTU_0695;OTU_<br>3180;OTU_2512 | OTU_0095;OTU_<br>1924 | OTU_1090  |
| Centralization of eigenvector centrality (CE) | 0.276                 | 0.3                              | 0.304                 | 0.349     |
| Density (D)                                   | 0.007                 | 0.006                            | 0.006                 | 0.009     |
| Reciprocity                                   | 1                     | 1                                | 1                     | 1         |
| Transitivity (Trans)                          | 0.203                 | 0.175                            | 0.137                 | 0.083     |
| Connectedness (Con)                           | 0.688                 | 0.792                            | 0.826                 | 0.655     |
| Efficiency                                    | 0.992                 | 0.995                            | 0.994                 | 0.99      |
| Hierarchy                                     | 0                     | 0                                | 0                     | 0         |
| Lubness                                       | 1                     | 1                                | 1                     | 1         |

Table S3. Topological properties of the empirical molecular ecological networks (MENs) of each plant part and their associated random MENs.

| Empirical Network Indexes |            |                   | 100 Random Networks Indexes          |           |               |                                      |           |               |
|---------------------------|------------|-------------------|--------------------------------------|-----------|---------------|--------------------------------------|-----------|---------------|
| Plant                     | Similarity | R <sup>2</sup> of | Average                              | Average   | Modularity    | Average                              | Average   | Modularity    |
| part                      | Threshold  | Power<br>Law      | clustering<br>coefficient<br>(avgCC) | Path (GD) | (Fast greedy) | clustering<br>coefficient<br>(avgCC) | Path (GD) | (Fast greedy) |
| Roots                     | 0.92       | 0.742             | 0.156                                | 6.969     | 0.846         | 0.010 ±                              | 4.192 ±   | 0.461 ±       |
|                           |            |                   |                                      |           |               | 0.002                                | 0.025     | 0.004         |
| Stem                      | 0.91       | 0.729             | 0.141                                | 8.123     | 0.872         | 0.008 ±                              | 4.412 ±   | 0.482 ±       |
|                           |            |                   |                                      |           |               | 0.002                                | 0.019     | 0.005         |
| Leaf                      | 0.91       | 0.744             | 0.141                                | 9.788     | 0.908         | 0.007 ±                              | 4.545 ±   | 0.498 ±       |
|                           |            |                   |                                      |           |               | 0.002                                | 0.023     | 0.005         |
| All                       | 0.72       | 0.908             | 0.097                                | 4.992     | 0.685         | 0.018 ±                              | 4.300 ±   | 0.577 ±       |
|                           |            |                   |                                      |           |               | 0.006                                | 0.068     | 0.006         |

Table S4. Node topology of molecular ecological networks for NifH harboring bacterial communities.

| Node           | Plant | OTU  | BLAST - Genus                                           |
|----------------|-------|------|---------------------------------------------------------|
| Classification | part  |      |                                                         |
| Network Hub    | All   | 0293 | Unidentified_bacterium_nif_cluster                      |
| Module Hub     | All   | 1090 | Unidentified_bacterium_nif_cluster                      |
|                |       | 0214 | Burkholderia_sp_Ch1-1_ctg00023                          |
|                |       | 1353 | Geobacter_uraniireducens_Rf4                            |
|                |       | 0502 | Methylocella_silvestris_BL2                             |
|                |       | 0922 | Opitutaceae_bacterium_TAV2_ctg796                       |
|                |       | 1751 | Rubrivivax_benzoatilyticus_JA297                        |
|                |       | 0909 | Leptothrix_cholodnii_SP-6                               |
|                | Roots | 0772 | Hyphomicrobium_sp_MC1                                   |
|                |       | 1039 | Hyphomicrobium_sp_MC1                                   |
|                |       | 3020 | Hyphomicrobium_sp_MC1                                   |
|                | Stem  | 0096 | Bradyrhizobium_sp_ORS278                                |
|                |       | 3587 | Geobacter_uraniireducens_Rf4                            |
|                |       | 5277 | Geobacter_uraniireducens_Rf4                            |
|                |       | 0082 | Hyphomicrobium_sp_MC1                                   |
|                |       | 2837 | Hyphomicrobium_sp_MC1                                   |
|                |       | 0557 | Hyphomicrobium_sp_MC1                                   |
|                |       | 2508 | Hyphomicrobium_sp_MC1                                   |
|                |       | 0361 | Novosphingobium_nitrogenifigens_DSM_19370_00023         |
|                |       | 0492 | Novosphingobium_nitrogenifigens_DSM_19370_00023         |
|                |       | 2153 | Opitutaceae_bacterium_TAV2_ctg796                       |
|                |       | 0843 | Rubrivivax_benzoatilyticus_JA297                        |
|                | Leaf  | 3619 | H_seropedicae_nifD                                      |
|                |       | 0767 | Geobacter_uraniireducens_Rf4                            |
|                |       | 0320 | Methylobacterium_nodulans_ORS_2060                      |
|                |       | 2115 | Bradyrhizobium_sp_ORS278                                |
|                |       | 3972 | Leptothrix_cholodnii_SP-6                               |
|                |       | 1989 | Leptothrix_cholodnii_SP-6                               |
|                |       | 0256 | Geobacter_sp_FRC-32                                     |
| Connectors     | All   | 1860 | Gluconacetobacter_diazotrophicus_PAI_5_complete_genome_ |
|                |       | 2143 | Bradyrhizobium_sp_ORS278                                |
|                |       | 1561 | Leptothrix_cholodnii_SP-6                               |
|                |       | 1154 | Geobacter_uraniireducens_Rf4                            |
|                |       | 3587 | Geobacter_uraniireducens_Rf4                            |
|                |       | 1615 | Leptothrix_cholodnii_SP-6                               |
|                |       | 0457 | Methylocella_silvestris_BL2                             |
|                | Roots | 1862 | Leptothrix_cholodnii_SP-6                               |
|                |       | 0163 | Burkholderia_sp_Ch1-1_ctg00023                          |
|                |       | 2546 | Unidentified_bacterium_nif_cluster                      |
|                |       | 1490 | Bradyrhizobium_elkaniifor_dinitrogen_reductase          |
|                | Stem  | 4184 | Gluconacetobacter_diazotrophicus_PAI_5_complete_genome_ |
|                | Leaf  | 0125 | Hyphomicrobium_sp_MC1                                   |
|                |       | 0520 | Leptothrix_cholodnii_SP-6                               |
|                |       | 1635 | Hyphomicrobium_sp_MC1                                   |
|                |       | 0301 | Geobacter_sp_FRC-32                                     |

## Table S5. Phylotypes and closest relatives of NifH sequences associated with different plant parts of summer-active perennial grasses.

|           |                                           |               | F              | rambot |            | Relative abundance (%) |       |      |      |                       |
|-----------|-------------------------------------------|---------------|----------------|--------|------------|------------------------|-------|------|------|-----------------------|
| Phylotype | Closest relative                          | Accession no. | Similarity (%) | Score  | Framshifts | Leaf                   | Steam | Root | Mean | Taxonomic description |
| OTU_367   | Hyphomicrobium sp. MC1                    | CCB66897      | 98             | 522    | 0          | 3.93                   | 3.52  | 4.19 | 3.88 | Alphaproteobacteria   |
| OTU 672   | Bradyrhizobium sp. ORS278                 | CAL79071      | 96             | 514    | 0          | 2.69                   | 3.20  | 1.73 | 2.54 | Alphaproteobacteria   |
| OTU_2909  | Opitutaceae bacteri um TAV2               | EEG22235      | 93             | 474    | 2          | 2.61                   | 2.90  | 1.61 | 2.37 | Verrucomicrobia       |
| OTU_562   | Hyphomicrobium sp. MC1                    | CCB66897      | 95             | 461    | 3          | 1.93                   | 1.62  | 1.49 | 1.68 | Alphaproteobacteria   |
| OTU_388   | Methylocella silvestri s BL2              | ACK52517      | 96             | 500    | 1          | 0.51                   | 0.45  | 3.55 | 1.50 | Alphaproteobacteria   |
| OTU 378   | Burkhol deria (endosymbiotic)             | AAK26105      | 99             | 511    | 1          | 0.26                   | 0.26  | 3.44 | 1.32 | Betaproteobacteria    |
| OTU_1260  | Opitutaceae bacteri um TAV2               | EEG22235      | 95             | 466    | 3          | 1.76                   | 1.05  | 0.76 | 1.19 | Verrucomicrobia       |
| OTU_328   | Methylocell a silvestri s BL2             | ACK52517      | 94             | 462    | 3          | 0.39                   | 0.13  | 2.79 | 1.10 | Alphaproteobacteria   |
| OTU_909   | Polaromonas naphthalenivorans CJ2         | ABM37652      | 99             | 509    | 1          | 1.34                   | 1.19  | 0.67 | 1.07 | Betaproteobacteria    |
| OTU 586   | Methylocell a silvestri s BL2             | ACK52517      | 96             | 502    | 1          | 0.55                   | 0.41  | 2.09 | 1.02 | Alphaproteobacteria   |
| OTU_323   | Gluconacetobacter diazotrophicus PAI 5    | CAP54379      | 95             | 502    | 1          | 1.25                   | 1.13  | 0.57 | 0.98 | Alphaproteobacteria   |
| OTU_370   | Xanthobacter autotrophicus Py2            | AB\$65347     | 96             | 502    | 1          | 1.12                   | 1.01  | 0.76 | 0.96 | Alphaproteobacteria   |
| OTU_1525  | Burkhol deria (endosymbiotic)             | AAK26105      | 99             | 513    | 1          | 0.11                   | 0.07  | 2.45 | 0.88 | Betaproteobacteria    |
| OTU 520   | Leptothrix cholodnii SP-6                 | ACB33698      | 99             | 510    | 1          | 0.54                   | 0.93  | 1.12 | 0.86 | Betaproteobacteria    |
| OTU_365   | Bradyrhizobium sp. ORS278                 | CAL79071      | 99             | 505    | 1          | 0.93                   | 0.96  | 0.53 | 0.80 | Alphaproteobacteria   |
| OTU_2435  | Opitutaceae bacteri um TAV2               | EEG22235      | 97             | 516    | 1          | 0.93                   | 1.00  | 0.47 | 0.80 | Verrucomicrobia       |
| OTU_359   | Polaromonas naphthal enivorans CJ2        | ABM37652      | 96             | 499    | 1          | 0.64                   | 0.94  | 0.77 | 0.78 | Betaproteobacteria    |
| OTU_49    | Methylocell a silvestri s BL2             | ACK52517      | 96             | 494    | 3          | 0.27                   | 0.10  | 1.96 | 0.78 | Alphaproteobacteria   |
| OTU_47    | Rubrivivax benzoatilyticus JA297          | EGJ10941      | 96             | 521    | 0          | 1.01                   | 0.68  | 0.59 | 0.76 | Betaproteobacteria    |
| OTU_59    | Bradyrhizobium sp. ORS278                 | CAL79071      | 98             | 504    | 1          | 0.58                   | 0.79  | 0.78 | 0.71 | Alphaproteobacteria   |
| OTU_11    | Pelobacter propionicus DSM 2379           | AB101060      | 95             | 498    | 1          | 0.92                   | 0.65  | 0.48 | 0.68 | Deltaproteobacteria   |
| OTU_498   | Hyphomicrobium sp. MC1                    | CCB66897      | 97             | 479    | 2          | 0.23                   | 0.16  | 1.65 | 0.68 | Alphaproteobacteria   |
| OTU_217   | Leptothrix cholodnii SP-6                 | ACB33698      | 96             | 500    | 1          | 0.74                   | 0.74  | 0.55 | 0.68 | Betaproteobacteria    |
| OTU_71    | Geobacter uraniire ducens Rf4             | ABQ25379      | 99             | 551    | 0          | 0.67                   | 0.89  | 0.43 | 0.66 | Deltaproteobacteria   |
| OTU_508   | Opitutaceae bacteri um TAV2               | EEG22235      | 94             | 441    | 4          | 0.91                   | 0.60  | 0.40 | 0.64 | Verrucomicrobia       |
| OTU_830   | Geobacter uraniire ducens Rf4             | ABQ25379      | 95             | 523    | 0          | 0.74                   | 0.60  | 0.56 | 0.63 | Deltaproteobacteria   |
| OTU_429   | Hyphomicrobium sp. MC1                    | CCB66897      | 97             | 479    | 2          | 0.37                   | 0.43  | 1.04 | 0.61 | Alphaproteobacteria   |
| OTU_608   | Novosphingobium nitrogenifigens DSM 19370 | EGD60366      | 96             | 521    | 0          | 0.64                   | 0.69  | 0.46 | 0.60 | Alphaproteobacteria   |
| OTU_454   | Novosphingobium nitrogenifigens DSM 19370 | EGD60366      | 94             | 487    | 1          | 0.57                   | 0.56  | 0.41 | 0.51 | Alphaproteobacteria   |
| OTU_149   | Herbaspirillum seropedicae SmR1           | CAA90932      | 94             | 511    | 0          | 0.37                   | 0.61  | 0.45 | 0.48 | Gammaproteobacteria   |
| OTU_449   | Rhizobium sp. OR\$571                     | AAA26316      | 96             | 492    | 1          | 0.50                   | 0.65  | 0.26 | 0.47 | Alphaproteobacteria   |
| OTU_96    | Bradyrhizobium sp. ORS278                 | CAL79071      | 98             | 482    | 2          | 0.48                   | 0.60  | 0.30 | 0.46 | Alphaproteobacteria   |
| OTU_923   | Novosphingobium nitrogenifigens DSM 19370 | EGD60366      | 94             | 481    | 2          | 0.52                   | 0.45  | 0.40 | 0.46 | Alphaproteobacteria   |
| OTU_1467  | Novosphingobium nitrogenifigens DSM       | EGD60366      | 94             | 483    | 2          | 0.54                   | 0.40  | 0.37 | 0.44 | Alphaproteobacteria   |
| OTU_290   | Geobacter bemidjiensis Bem                | ACH39087      | 97             | 538    | 0          | 0.47                   | 0.43  | 0.33 | 0.41 | Deltaproteobacteria   |
| OTU_1118  | Opitutaceae bacteri um TAV2               | EEG22235      | 95             | 456    | 4          | 0.40                   | 0.48  | 0.23 | 0.37 | Verrucomicrobia       |
| OTU_623   | Azospirillum amazonense Y2 01430          | EGX99768      | 99             | 527    | 0          | 0.27                   | 0.59  | 0.22 | 0.36 | Alphaproteobacteria   |
| OTU_74    | Hyphomicrobium sp. MC1                    | CCB66897      | 97             | 509    | 0          | 0.49                   | 0.16  | 0.39 | 0.35 | Alphaproteobacteria   |
| OTU_16    | Geobacter uraniire ducens Rf4             | ABQ25379      | 95             | 505    | 1          | 0.53                   | 0.24  | 0.24 | 0.34 | Deltaproteobacteria   |
| OTU_487   | Opitutaceae bacteri um TAV2               | EEG22235      | 90             | 425    | 3          | 0.47                   | 0.18  | 0.37 | 0.34 | Verrucomicrobia       |
| OTU_125   | Hyphomicrobium sp. MC1                    | CCB66897      | 97             | 481    | 2          | 0.45                   | 0.34  | 0.21 | 0.33 | Alphaproteobacteria   |
| OTU_568   | Hyphomicrobium sp. MC1                    | CCB66897      | 97             | 483    | 2          | 0.41                   | 0.36  | 0.22 | 0.33 | Alphaproteobacteria   |
| OTU_27    | Opitutaceae bacteri um TAV2               | EEG22235      | 96             | 491    | 2          | 0.47                   | 0.31  | 0.19 | 0.32 | Verrucomicrobia       |
| OTU_332   | Hyphomicrobium sp. MC1                    | CCB66897      | 96             | 496    | 3          | 0.46                   | 0.30  | 0.18 | 0.31 | Alphaproteobacteria   |
| OTU_1022  | Polaromonas naphthal enivorans CJ2        | ABM37652      | 98             | 456    | 2          | 0.47                   | 0.18  | 0.28 | 0.31 | Betaproteobacteria    |
| OTU_63    | Methylobacterium nodulans ORS 2060        | ACL58883      | 96             | 482    | 2          | 0.36                   | 0.32  | 0.23 | 0.30 | Alphaproteobacteria   |
| OTU_99    | Methylocella silvestri s BL2              | ACK52517      | 95             | 475    | 2          | 0.14                   | 0.08  | 0.68 | 0.30 | Alphaproteobacteria   |
| OTU_238   | Burkhol deria (endosymbiotic)             | AAK26105      | 93             | 477    | 1          | 0.01                   | 0.04  | 0.85 | 0.30 | Betaproteobacteria    |
| OTU_140   | Geobacter bemidjiensis Bem                | ACH39087      | 98             | 521    | 2          | 0.23                   | 0.33  | 0.28 | 0.28 | Deltaproteobacteria   |
| OTU_437   | Burkhol deria sp. Ch1-1                   | EFG73464      | 100            | 535    | 0          | 0.34                   | 0.37  | 0.13 | 0.28 | Betaproteobacteria    |
| OTU_29    | Methylocell a silvestri s BL2             | ACK52517      | 94             | 452    | 4          | 0.10                   | 0.04  | 0.68 | 0.27 | Alphaproteobacteria   |
| OTU_1357  | Polaromonas naphthalenivorans CJ2         | ABM37652      | 99             | 508    | 1          | 0.27                   | 0.37  | 0.18 | 0.27 | Betaproteobacteria    |
| OTU_511   | Opitutaceae bacteri um TAV2               | EEG22235      | 96             | 491    | 2          | 0.33                   | 0.33  | 0.15 | 0.27 | Verrucomicrobia       |
| OTU_14    | Leptothrix cholodnii SP-6                 | ACB33698      | 99             | 510    | 1          | 0.14                   | 0.41  | 0.22 | 0.26 | Betaproteobacteria    |
| OTU_112   | Dechloromonas aromatica RCB               | AAZ46164      | 98             | 536    | 0          | 0.23                   | 0.33  | 0.20 | 0.25 | Betaproteobacteria    |
| OTU_503   | Pelobacter propionicus DSM 2379           | ABL01060      | 95             | 488    | 2          | 0.39                   | 0.22  | 0.14 | 0.25 | Deltaproteobacteria   |
| OTU_30    | Hyphomicrobium sp. MC1                    | CCB66897      | 96             | 515    | 0          | 0.25                   | 0.27  | 0.23 | 0.25 | Alphaproteobacteria   |
| OTU_1376  | Burkholderia (endosymbiotic)              | AAK26105      | 98             | 499    | 2          | 0.06                   | 0.04  | 0.64 | 0.25 | Betaproteobacteria    |
| OTU_142   | Burkhol deria (endosymbiotic)             | AAK26105      | 99             | 529    | 0          | 0.02                   | 0.00  | 0.71 | 0.24 | Betaproteobacteria    |
| OTU_644   | Burkholderia sp. Ch1-1                    | EFG73464      | 98             | 505    | 1          | 0.26                   | 0.20  | 0.27 | 0.24 | Betaproteobacteria    |
| OTU_12    | Dechloromonas aromatica RCB               | AAZ46164      | 94             | 504    | 1          | 0.45                   | 0.09  | 0.19 | 0.24 | Betaproteobacteria    |
| OTU_573   | Opitutaceae bacteri um TAV2               | EEG22235      | 95             | 480    | 2          | 0.28                   | 0.27  | 0.17 | 0.24 | Verrucomicrobia       |
| OTU_329   | Bradyrhizobium sp. ORS278                 | CAL79071      | 99             | 507    | 1          | 0.26                   | 0.30  | 0.15 | 0.24 | Alphaproteobacteria   |
| OTU_337   | Geobacter uraniireducens Rf4              | ABQ25379      | 94             | 478    | 2          | 0.21                   | 0.24  | 0.22 | 0.23 | Deltaproteobacteria   |
| OTU_458   | Geobacter uraniireducens Rf4              | ABQ25379      | 94             | 474    | 2          | 0.34                   | 0.19  | 0.11 | 0.21 | Deltaproteobacteria   |
| UTU_698   | Burkholderia sp. Ch1-1                    | EFG73464      | 98             | 519    | 1          | 0.07                   | 0.26  | 0.30 | 0.21 | Betaproteobacteria    |
| OTU_661   | Azospirillum amazonense Y2 01430          | EGX99768      | 99             | 505    | 1          | 0.18                   | 0.31  | 0.11 | 0.20 | Alphaproteobacteria   |

Table S6. Niche values<sup>&</sup> for plant-C and plant-N as indicators of abundance-weighted mean of the environmental variables for each *nif*H-OTU in the community and the significance is based on a p<0.05 (two-tailed test).

| Plant C niche | e values       |        |        |             |             |
|---------------|----------------|--------|--------|-------------|-------------|
| Observed      | Mean.Simulated | LowCl  | UppCl  | Significanc | e at P<0.05 |
| OTU_2909      | 293.73         | 281.99 | 269.10 | 296.15      | Non-sig     |
| OTU 1017      | 299.45         | 282.16 | 261.46 | 302.94      | Non-sig     |
| _<br>OTU 2435 | 298.08         | 282.04 | 269.18 | 295.88      | Higher      |
| <br>OTU 1118  | 296.46         | 282.20 | 263.50 | 300.67      | Non-sig     |
| OTU 1260      | 300.82         | 281 74 | 265 36 | 298 47      | Higher      |
| OTU 1189      | 310.05         | 281.25 | 243 56 | 314 21      | Non-sig     |
| OTU 1353      | 284 51         | 280.67 | 194.04 | 355.49      | Non-sig     |
| OTU 1151      | 287.29         | 200.07 | 236.90 | 324.82      | Non-sig     |
| OTU 1525      | 162.64         | 202.27 | 219.62 | 338 / 1     | Lower       |
| 010_1323      | 195.60         | 200.30 | 213.02 | 227.22      | Lower       |
| 010_1370      | 242.07         | 200.55 | 212.95 | 337.23      | Nensia      |
| 010_1035      | 343.07         | 281.79 | 207.50 | 394.40      | Non-sig     |
| 010_1308      | 223.80         | 282.17 | 207.59 | 351.14      | NOTI-STg    |
| 010_1015      | 191.96         | 280.75 | 221.14 | 337.39      | Lower       |
| 010_2080      | 236.38         | 281.00 | 225.52 | 330.93      | Non-sig     |
| 010_1022      | 2/4.6/         | 282.26 | 227.03 | 338.05      | Non-sig     |
| OTU_1367      | 291.94         | 281.63 | 247.90 | 313.99      | Non-sig     |
| OTU_1357      | 294.65         | 281.71 | 262.83 | 300.45      | Non-sig     |
| OTU_1862      | 293.18         | 281.17 | 225.05 | 327.32      | Non-sig     |
| OTU_1467      | 289.92         | 281.84 | 261.12 | 303.12      | Non-sig     |
| OTU_1219      | 284.98         | 280.83 | 250.08 | 312.36      | Non-sig     |
| OTU_1347      | 297.14         | 281.44 | 259.34 | 305.26      | Non-sig     |
| OTU_1162      | 298.73         | 281.28 | 238.04 | 323.12      | Non-sig     |
| OTU_1490      | 288.94         | 281.46 | 242.12 | 320.48      | Non-sig     |
| OTU_1032      | 277.15         | 280.87 | 227.13 | 325.58      | Non-sig     |
| OTU_1975      | 277.48         | 280.88 | 253.96 | 309.02      | Non-sig     |
| OTU_1292      | 282.38         | 281.46 | 252.94 | 308.22      | Non-sig     |
| OTU_1599      | 300.10         | 280.98 | 219.93 | 339.32      | Non-sig     |
| OTU_1186      | 301.09         | 281.77 | 265.78 | 298.12      | Higher      |
| Plant N nich  | e values       |        |        |             |             |
| OTU_2909      | 12.92          | 12.47  | 11.82  | 13.06       | Non-sig     |
| OTU_1017      | 13.06          | 12.47  | 11.54  | 13.30       | Non-sig     |
| OTU_2435      | 13.08          | 12.48  | 11.85  | 13.08       | Higher      |
| OTU_1118      | 13.02          | 12.47  | 11.62  | 13.28       | Non-sig     |
| OTU_1260      | 13.46          | 12.50  | 11.78  | 13.20       | Higher      |
| OTU_1189      | 14.39          | 12.53  | 11.10  | 14.14       | Higher      |
| OTU_1353      | 13.45          | 12.45  | 9.16   | 16.26       | Non-sig     |
| OTU 1151      | 12.50          | 12.45  | 10.50  | 14.46       | Non-sig     |
| OTU 1525      | 8.76           | 12.42  | 10.02  | 15.19       | Lower       |
| OTU 1376      | 9.64           | 12.43  | 9.94   | 15.16       | Lower       |
| OTU 1035      | 13.35          | 12.68  | 6.70   | 20.27       | Non-sig     |
| OTU 1308      | 10.02          | 12.49  | 9.55   | 15.86       | Non-sig     |
| OTU 1015      | 10.20          | 12.42  | 9.99   | 15.09       | Non-sig     |
| OTU 2080      | 10.16          | 12.49  | 10.16  | 15.02       | Lower       |
| OTU 1022      | 12.68          | 12.48  | 10.01  | 14.86       | Non-sig     |
| OTU 1367      | 12 30          | 12.50  | 10.98  | 14.04       | Non-sig     |
| OTU 1357      | 12.55          | 12.30  | 11.69  | 13.28       | Non-sig     |
| OTIL 1862     | 11 /3          | 12.45  | 10.28  | 14 98       | Non-cia     |
| OTU 1/67      | 17.45          | 12.52  | 11 55  | 12 / 5      | Non-sig     |
| OTU 1210      | 12.04          | 12.47  | 11.33  | 13.45       | Non-sig     |
| OTU 12/7      | 12.10          | 12.49  | 11.21  | 13.03       | Non-sig     |
| OTU 1162      | 12.04          | 12.49  | 10.92  | 1/ 52       | Non sig     |
| OTU 1400      | 13.83          | 12.50  | 10.83  | 14.53       | Non-sig     |
| 010_1490      | 12.54          | 12.44  | 10.85  | 14.10       | inon-sig    |
| 010_1032      | 11.96          | 12.45  | 10.53  | 14.87       | Non-sig     |
| OTU_1975      | 12.60          | 12.48  | 11.26  | 13.62       | Non-sig     |
| OTU_1292      | 12.80          | 12.49  | 11.34  | 13.57       | Non-sig     |
| OTU_1599      | 12.20          | 12.51  | 9.73   | 15.30       | Non-sig     |
| OTU_1186      | 12.98          | 12.50  | 11.81  | 13.26       | Non-sig     |

<sup>&</sup>Estimated as per Guillem Salazar (2019). EcolUtils: Utilities for community ecology analysis. R package version 0.1. https://github.com/GuillemSalazar/EcolUtils.

Figure S1. Venn diagram showing number of unique and shared OTUs of total OTUs between different plant parts for individual grass species.



Figure S2. Relative abundances (averages of replicates) of top 17 diazotrophic (*nifH*-gene harbouring) genera accounting for >85 of total OTU abundance in different plant parts (leaf, stem and root) for the summer-active perennial grasses at Karoonda in Australia (this study) and the Switchgrass at the Kellogg Biological Station in USA (adopted from the data reported by Roley et al., 2019).



Figure S3. Relative abundances (averages of replicates) diazotrophic communities in (A) different plant parts (leaf, stem and root) and (B) above- vs. below-ground parts for the summer-active perennial grasses at Karoonda in Australia. Asterix \* indicates significant differences between the different plant parts at P<0.05.



## (B) Above vs. Below ground



Figure S4. Diazotroph (*nifH*-gene harbouring) community network generated based on RMT-based network analysis. Circles represent nodes whose size indicates connectivity, node colour represents taxonomy at the genus level. Edges indicate co-occurrence between nodes coloured either blue for positive or red for negative. Each circular grouping is a module. Each circular grouping is a module, modules containing at least five nodes are identified by their assigned number.







Figure S5. Topological roles of OTUs based on distribution of nodes on Zi (within module) vs. Pi (among module) connectivity scatter plots for the leaf, stem and root samples. (A) For individual plant part; each color represents an OTU from the three networks and (B) For the entire endophytic *nifH*-gene harbouring community.



(A) Individual plant parts

Figure S6. Pearson correlation resulting from a Mantel correlogram between the pairwise matrix of OTU niche distances and phylogenetic distances with 999 permutations. Significant correlations (p < 0.05, solid squares) indicate phylogenetic signal in species ecological niches.



11

Figure S7. The net relatedness index (NRI) and nearest taxon index (NTI) for three plant parts for three plant species. Positive NRI or NTI indicates phylogenetic clustering and negative NRI or NTI indicates phylogenetic evenness.

