Improved Modeling of Peptide-Protein Binding through Global Docking and Accelerated Molecular Dynamics Simulations

Jinan Wang¹, Andrey Alekseenko^{2,3,4}, Dima Kozakov^{2,3} and Yinglong Miao^{1,*}

¹Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66047, USA

² Laufer Center for Physical and Quantitative Biology, Stony Brook University, NY, USA

³Department of Applied Mathematics and Statistics, Stony Brook University, NY, USA

*Email: miao@ku.edu

Supplementary Methods

Gaussian accelerated Molecular Dynamics (GaMD)

GaMD enhances the conformational sampling of biomolecules by adding a harmonic boost potential to reduce the system energy barriers (Miao et al., 2015). When the system potential $V(\vec{r})$ is lower than a reference energy *E*, the modified potential $V^*(\vec{r})$ of the system is calculated as:

$$V^{*}(\vec{r}) = V(\vec{r}) + \Delta V(\vec{r})$$

$$\Delta V(\vec{r}) = \begin{cases} \frac{1}{2} k (E - V(\vec{r}))^{2}, & V(\vec{r}) < E\\ 0, & V(\vec{r}) \ge E, \end{cases}$$
(1)

Where k is the harmonic force constant. The two adjustable parameters E and k are automatically determined based on three enhanced sampling principles. First, for any two arbitrary potential values $V_1(\vec{r})$ and $V_2(\vec{r})$ found on the original energy surface, if $V_1(\vec{r}) < V_2(\vec{r})$, ΔV should be a monotonic function that does not change the relative order of the biased potential values; i.e., $V_1^*(\vec{r}) < V_2^*(\vec{r})$. Second, if $V_1(\vec{r}) < V_2(\vec{r})$, the potential difference observed on the smoothened energy surface should be smaller than that of the original; i.e., $V_2^*(\vec{r}) - V_1^*(\vec{r}) < V_2(\vec{r}) - V_1(\vec{r})$. By combining the first two criteria and plugging them in the formula of $V^*(\vec{r})$ and ΔV , we obtain

$$V_{max} \le E \le V_{min} + \frac{1}{k},\tag{2}$$

Where V_{min} and V_{max} are the system minimum and maximum potential energies. To ensure that Eq. 2 is valid, k has to satisfy: $k \le 1/(V_{max} - V_{min})$. Let us define: $k = k_0 \cdot 1/(V_{max} - V_{min})$, then $0 < k_0 \le 1$. Third, the standard deviation (SD) of ΔV needs to be small enough (i.e. a narrow distribution) to ensure accurate reweighting using cumulant expansion to the second order: $\sigma_{\Delta V} = k(E - V_{avg})\sigma_V \le \sigma_0$, where V_{avg} and σ_V are the average and SD of ΔV with σ_0 as a user-specified upper limit (e.g., $10k_BT$) for accurate reweighting. When *E* is set to the lower bound $E = V_{max}$ according to Eq. 2, k_0 can be calculated as

$$k_0 = \min(1.0, k'_0) = \min\left(1.0, \frac{\sigma_0}{\sigma_V} \cdot \frac{V_{max} - V_{min}}{V_{max} - V_{avg}}\right),\tag{3}$$

Alternatively, when the threshold energy E is set to its upper bound $E = V_{min} + 1/k$, k_0 is set to:

$$k_0 = k_0^{\prime\prime} \equiv \left(1 - \frac{\sigma_0}{\sigma_V}\right) \cdot \frac{V_{max} - V_{min}}{V_{avg} - V_{min}},\tag{4}$$

If k_0'' is calculated between 0 and 1. Otherwise, k_0 is calculated using Eq. 3.

Energetic Reweighting of GaMD Simulations

To calculate potential of mean force (PMF), the probability distribution along a reaction coordinate is written as $p^*(A)$. Given the boost potential $\Delta V(r)$ of each frame, $p^*(A)$ can be reweighted to recover the canonical ensemble distribution p(A), as:

$$p(A_j) = p^*(A_j) \frac{\langle e^{\beta \Delta V(r)} \rangle_j}{\sum_{i=1}^M \langle p^*(A_i) e^{\beta \Delta V(r)} \rangle_i}, \ j = 1, \dots, M,$$
(5)

where *M* is the number of bins, $\beta = k_B T$ and $\langle e^{\beta \Delta V(r)} \rangle_j$ is the ensemble-averaged Boltzmann factor of $\Delta V(r)$ for simulation frames found in the *j*th bin. The ensemble-averaged reweighting factor can be approximated using cumulant expansion:

$$\langle e^{\beta \Delta V(r)} \rangle = exp\left\{ \sum_{k=1}^{\infty} \frac{\beta^k}{k!} C_k \right\},\tag{6}$$

where the first two cumulants are given by:

$$C_1 = \langle \Delta V \rangle,$$

$$C_2 = \langle \Delta V^2 \rangle - \langle \Delta V \rangle^2 = \sigma_v^2.$$
(7)

The boost potential obtained from GaMD simulations usually follows near-Gaussian distribution (Miao and McCammon, 2017). Cumulant expansion to the second order thus provides a good approximation for computing the reweighting factor (Miao et al., 2014; Miao et al., 2015). The reweighted free energy $F(A) = -k_BT \ln p(A)$ is calculated as:

$$F(A) = F^*(A) - \sum_{k=1}^2 \frac{\beta^k}{k!} C_k + F_c,$$
(8)

where $F^*(A) = -k_B T \ln p^*(A)$ is the modified free energy obtained from GaMD simulation and F_c is a constant.

References:

- Miao, Y., Feher, V.A., and Mccammon, J.A. (2015). Gaussian Accelerated Molecular Dynamics: Unconstrained Enhanced Sampling and Free Energy Calculation. J. Chem. Theory Comput. 11, 3584-3595. doi:10.1021/acs.jctc.5b00436
- Miao, Y., Sinko, W., Pierce, L., Bucher, D., Walker, R.C., and Mccammon, J.A. (2014). Improved Reweighting of Accelerated Molecular Dynamics Simulations for Free Energy Calculation. J. Chem. Theory Comput. 10, 2677-2689. doi:10.1021/ct500090q
- Miao, Y., and Mccammon, J.A. (2017). Gaussian Accelerated Molecular Dynamics: Theory, Implementation, and Applications. *Annu. Rep. Comput. Chem.* 13, 231-278. doi:10.1016/bs.arcc.2017.06.005

					1	
Cluster id	PeptiDock+GaMD		PeptiDock+GaMD		PeptiDock+cMD	
	(Neutral terminus)		(Zwitterion terminus)		(Noutral terminus)	
	(iveuirui ierminus)				(iveairai terminas)	
	Peptide	PMF	Peptide	PMF	Peptide	PMF
	backbone	(kcal/mol)	backbone	(kcal/mol)	backbone	(kcal/mol)
	RMSD (Å)		RMSD (Å)		RMSD (Å)	
1	0.94	0.00	1.22	0.00	0.96	0.00
2	2.79	3.45	2.67	2.81	3.50	0.39
3	3.10	3.36	3.58	2.46	9.02	0.85
4	2.78	2 (0	2 49	2.70	5.40	1.20
4	2.78	3.69	3.48	2.70	5.49	1.30
5	3.62	3.81	3 69	2 90	10.10	1.68
5	5.02	5.01	5.07	2.90	10.10	1.00
6	4.04	4.51	2.36	2.87	10.82	1.74
		-				
7	6.27	3.54	4.24	3.44	9.29	1.83
8	4.68	5.37	3.56	2.95	8.00	1.99
9	7.48	5.63	3.01	3.53	12.75	2.04
10 ^a	-	-	3.23	2.95	6.76	2.12

 Table S1. Comparison of 10 top-ranked clusters of Peptide 1 with different terminus models

 using the PeptiDock+GaMD and PeptiDock+cMD approach

^a Only nine clusters were obtained for Peptide 1 from the GaMD trajectories and thus there were no RMSD or PMF values (-) for cluster 10.

•

Cluster id	PeptiDock+GaMD (Neutral terminus)		PeptiDock+GaMD (Zwitterion terminus)		PeptiDock+cMD (Neutral terminus)	
	Peptide backbone RMSD (Å)	PMF (kcal/mol)	Peptide backbone RMSD (Å)	PMF (kcal/mol)	Peptide backbone RMSD (Å)	PMF (kcal/mol)
1	0.61	0.00	5.50	0.27	4.46	0.00
2	3.22	1.38	0.62	0.00	2.79	0.22
3	4.58	1.47	9.10	0.98	5.72	0.68
4	5.85	0.91	14.11	1.00	5.09	1.20
5	4.15	1.67	11.37	1.67	5.77	1.21
6	5.86	2.03	23.01	1.68	8.03	1.26
7	5.75	3.00	15.78	1.39	4.93	1.36
8	6.29	3.07	4.93	1.62	7.72	1.38
9	6.48	3.23	16.10	1.48	18.21	1.53
10	5.16	2.85	25.89	1.96	7.98	1.78

Table S2. Comparison of 10 top-ranked clusters of Peptide 2 with different terminus models

using the *PeptiDock+GaMD* and *PeptiDock+cMD* approach

Cluster id	PeptiDock+GaMD		PeptiDo	ock+GaMD	PeptiDock+cMD	
	(Neutral terminus)		(Zwitterion terminus)		(Neutral terminus)	
	Peptide backbone RMSD (Å)	PMF (kcal/mol)	Peptide backbone RMSD (Å)	PMF (kcal/mol)	Peptide backbone RMSD (Å)	PMF (kcal/mol)
1	4.51	0.00	9.45	0.18	6.26	0.00
2	7.11	0.27	3.88	0.75	5.25	0.01
3	2.72	0.65	8.31	0.62	5.47	0.14
4	9.29	0.74	17.47	0.50	10.95	0.15
5	7.48	1.91	4.30	0.11	5.62	0.40
6	11.94	2.21	3.67	0.38	4.68	0.41
7	9.84	0.99	5.33	0.46	4.74	0.72
8	4.23	2.14	9.67	1.50	8.00	0.74
9	8.21	1.46	11.07	1.32	6.35	0.81
10	8.02	1.60	3.68	0.0	9.82	0.82

 Table S3. Comparison of 10 top-ranked clusters of Peptide 3 with different terminus models

 using the PeptiDock+GaMD and PeptiDock+cMD approach

Peptide #	Peptide sequence	Peptide motif	Excluded PDBs	Hits found
1	PAMPAR	PXMPXR	1SSH 1Q2V 2B3H 2B3K 2B3L 2BER 2BPA 2BZD 2G6P 2GZ5 2J2F 2NQ6 2NQ7 2X6U 2X6V 2XPY 2XPZ 2XQ0 2XZ0 2XZ1 3T2B 3T2C 3T2D 3T2E 3T2F 3T2G	107
2	TIYAQV	TI[YF]XX[VI]	1D4T 1D4W 1I3Z 1M27	686
3	RRRHPS	RXRHXS	2C3I 3CXW 3CY2 3CY3 4GW8	198

Table S4. Parameters of ClusPro PeptiDock runs

Figure S1. Workflow of the PeptiDock+GaMD approach

Figure S2. Comparison of zwitterion (left) and neutral (right) terminus models in GaMD simulations of Peptide 1.

Figure S3. Comparison of zwitterion (left) and neutral (right) terminus models in GaMD simulations of Peptide 2.

Figure S4. Comparison of zwitterion (left) and neutral (right) terminus models in GaMD simulations of Peptide 3.

Figure S5 Binding poses (red) of three model peptides using the zwitterionic terminus models obtained using the "*PeptiDock+GaMD*" are compared with the X-ray structures (green): (A) Peptide 1, (B) Peptide 2 and (C) Peptide 3.

Figure S6. Peptide Backbone RMSD vs time in cMD simulations of Peptide 1-3 with neutral terminus model.