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S1 COMPLIANCE-PRESSURE RELATIONSHIP OF THE EYE

According to Ethier et al. (2004), the pressure-volume relationship of the eye can be written as
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where v = 2Ah/R, and P, 4 and V,. 4 represent the values of P and V' at a specific reference state. R and
h represent the radius and thickness of the corneoscleral shell. A and « represent the material properties of
the corneoscleral shell, defined based on the Fung constitutive relation for collagenous tissues describing
stress ¢ in terms of strain € according to o = A (e** — 1).

Expressing Equation 1 in terms of V' and differentiating with respect to P yields an expression for the
ocular compliance given by
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If we define a reference ocular compliance, ¢, that applies at P = P,. 4, then ¢ can be written in terms of

¢r as
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This expression describes the ocular compliance relationship as a function of pressure and is consistent
with Equation 3 of the main text.
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S2 NOMENCLATURE OF KEY VARIABLES

Time-dependent variables

Q nl/min Flow rate as measured by the flow sensor
Qs nl/min Flow rate into the system compliance
Qs nl/min Flow rate into the ocular compliance
Qr nl/min Flow rate through the aqueous humour outflow pathway.
P mmHg Pressure as measured by the pressure sensor, representative of intraocular
pressure
P, mmHg Applied pressure
Pressure-dependent variables
) nl/mmHg Ocular compliance
R mmH g/ (ul/min) Hydrodynamic resistance of the outflow pathway
C nl/min/mmHg  Conventional outflow facility (C' = 1/R)
Variables for each step, ;
Qj nl/min Steady state flow rate for step j
P mmH g Steady state pressure for step j
Py j mmH g Applied pressure for step j
Py mmH g Pressure corresponding to the measured compliance for step j using the
Discrete Volume Method
AP; mmH g Difference in steady state pressure P between two steps
AP, ; mmH g Difference in applied pressure P, between two steps
AVy nl Change in intraocular volume for a change in intraocular pressure
oF nl/mmHg Ocular compliance for step j
Aj - Non-linearity parameter arising in Step Response Method.
Variables that are constant for each eye
Os nl/mmHg System compliance
Or nl/mmHg Reference compliance at P, 4
R, mmHg/ (pul/min) Combined hydrodynamic resistance of the flow sensor and capillary
R. mmHg/ (pl/min) Hydrodynamic resistance of the cannula
Cy nl/min/mmHg  Hydrodynamic conductance of flow sensor and capillary
C, nl/min/mmHg  Reference facility at P, .
6] - Non-linearity parameter characterising pressure dependence of outflow
facility
7y mmH g Non-linearity parameter characterising deviation from Friedenwald’s
model
P mmH g Reference pressure for facility calculations
P mmH g Reference pressure for compliance calculations
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S3 DETERMINING P, FOR THE DISCRETE VOLUME METHOD

Ocular compliance changes as a function of pressure. Hence, ocular compliance measured over a pressure

step by the Discrete Volume Method, AV}, /AP, corresponds to the true value of the ocular compliance at

some pressure between ;1 and P;, which we term Py ;. According to the mean value theorem, AV¢ /AP
is equivalent to dVy/d P evaluated at P ;:

dVy

= — S4

¢‘P¢,,j dP >4

Py

Using Equation to evaluate ¢ at P ; and by applying the integral over the j th pressure step from Pj at
t=0to Pj_jatt =T, where AP; = P; — P;_1, we can write
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Cancelling ¢, ( o T 7) from both sides yields
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Using the Laurent series expansion 1/In (1 4+ z) = 1/x +1/2 — 2/12 + O (2?) allows us to write an
solution for Py ;
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This reveals that to leading order, Py ; is simply the midpoint between P;_1 and P;.
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S4 ANALYSIS FOR THE STEP RESPONSE METHOD

In this section, we derive an analytical solution to the step response of a system with pressure-dependent
resistance and compliance. We start with the simple lumped parameter model shown in Fig 1b, with R,
neglected andcompliances ¢ and ¢4 in parallel . This yields the equation:
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where the compliance dependence on pressure is described by
P+
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The facility pressure dependence is given by
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In the experiments, the applied pressure is adjusted in a series of steps and held constant until the pressure
in the eye asymptotes to a steady value. For an arbitrary step starting at ¢ = 0 the initial condition is defined
as P;_1, which is the steady state pressure of the previous step. The steady state asymptote for the j th step
is found by setting the derivative in Equation [S9Y|to zero which yields
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where () is the facility at P = P;. Because of the non-linearity due to the pressure dependence in both
the compliance and facility, we seek a solution to Equation[S9|using asymptotic analysis, where we assume
that the size of the imposed pressure step, AP; = P; — P;_1, is small relative to the pressure at the end of
the step, P;.

We define the non-dimensional pressure p* during step j according to
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which is equivalent to
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Substituting Equations [SI4]into Equation [S9|
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The pressure dependent facility (see Equation [STI)) can be written using a series expansion around € = 0,
to O(£?):
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Substituting Equations [S12]and [ST6] the differential equation becomes
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Similarly the reciprocal of the pressure dependent total compliance can be written to O(¢):
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where ¢; = ¢, ( ;;ﬁ?) is the ocular compliance at step j. Substituting this expression into [S17|and

collecting powers of €, we obtain to O(¢)
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Equation [ST8 has the exact solution due to Bernoulli
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where k; is an arbitrary integration constant.

Using the initial condition p*(0) = 1, yields k; = 1 — ea;, hence:

1
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Substituting into Equation and letting \; = ea; we obtain the equation for P(t)

P(t) =P (1 - Aéj ! ) (S20)
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where using the definition of ¢ (Equation [ST5)
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Due to the dependence of \; on -, an iterative process must be applied. The initial estimate of 7; for this
process can be calculated by omitting terms of O(e), which is equivalent to setting A\; = 0.
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