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A1. DERIVATION OF THE PROPAGATOR EQ. (7)

Here we present the detail of derivation for the propagator
Eq. (7) from Eq. (6) through the gaussian integrals. For this
purpose, we use an useful identity relation in the gaussian in-
tegral

NN1

∫
dX1 e−(X2+aX1+b)2/ce−(X1+A1X0+B1)2/C1

= N2e−(X2+A2X0+B2)2/C2 , (A1)

where the normalization constants are N = 1/
√

cπ, N1 =

1/
√

C1π, and N2 = 1/
√

C2π, and the relations between Ai,
Bi, and Ci [i = 1] are given by

Ai+1 = −aAi , Bi+1 = −aBi + b , Ci+1 = a2Ci + c . (A2)

We apply for this integral rule to X2 in Eq. (A1) such that
the R.H.S term is integrated over X2 with a weight function
Ne−(X3+aX2+b)2/c. Then, we get N3e−(X3+A3X0+B3)2/C3 with the
recursion relation Eq. (A2) [i = 2] and N3 = 1/

√
C3π.

First, we consider the propagator Π[v(ti + τi)|v(ti)] be-
tween two successive transition times where f (t) = fi dur-
ing the time interval t ∈ [ti, ti + τi], see Fig. 1. Putting
A1 = a = γδt − 1, B1 = b = − fiδt, and C1 = c = 4γβ−1δt,
and repeating the integrations over Xµ = v(ti + µδt), where
µ ∈ {0, . . . , n} is the index used for discretizing the time inter-
val τi = nδt with n → ∞, one can obtain Π [v(ti + τi)|v(ti)] =√

1/[Cnπ]e−[v(ti+τi)+Anv(ti)+Bn]2/Cn with

An = − (−a)n = −e−γτi ,

Bn = b
1 − (−a)n

1 + a
= − fi

(
1 − e−γτi

)
/γ ,

Cn = c
1 − a2n

1 + a2 = 2β−1
(
1 − e−2γτi

)
. (A3)

It is straightforward to obtain the propagator
Π [v(t + ∆t)|v(t)] for an arbitrary time interval ∆t from
the above relation. For all the transition times ti, ti+1, . . . , t j
in between t and t + ∆t, we repeat the same gaussian in-
tegral to get Π [v(t + ∆t)|v(t)] =

∫
dv(t j) · · ·

∫
dv(ti)Π[v(t +

∆t)|v(t j)]Π[v(t j)|v(t j−1)] · · ·Π[v(ti+1)|v(ti)]Π[v(ti)|v(t)]. After
this integration, we arrive at the expression shown in Eq. (7).

A2. GENERATION OF THE NOISE f (t)

The telegraphic noise f (t) in our model is generated by re-
alizing the two random sequences of the noise amplitude { fi}
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and duration time {τi}. The random number fi is i.i.d. from
the PDF P( f ) and τi is i.i.d. from the PDF of P(τ).

A. The noise duration time {τi}

The sequence {τi} is generated for the three distinct PDFs
of P(τ) as summarized in Tab. 1. The exponentially dis-
tributed random number was generated using the uniform ran-
dom number in [0, 1) via the inverse transform sampling [1].
The gaussian random number was generated using the stan-
dard Box-Müller transform [2]. For the power-law case, we
considered the PDF P(τ) = α

τmin(1−(τmin/T )α) (τ/τmin)−(1+α) for
τ ∈ [τmin,T ] and τmin = 1. The random number governed by
this P(τ) was generated through its inverse cumulative func-
tion {X|X = τminu−1/α, X ≤ T } where u is a uniformly dis-
tributed random number u ∈ [0, 1).

B. The noise amplitude { fi}

We considered three distinct PDFs of P( f ) for generat-
ing the random sequence { fi}. Our primary model for the
multiple-states fi is a uniform distribution in an interval ( fi ∈
[− f0, f0]). The uniformly distributed random number was
generated using the method in Numerical Recipes in For-
tran [2]. The second model is a gaussian model for the dis-
tribution of { fi}, implemented using the same Box-Müller
method above [2]. The third one is the dichotomous noise
model P( f ) = 1

2δ( f + f0) + 1
2δ( f − f0), which was imple-

mented for the study of two-state systems including the noisy
Lévy walks (Figs. 7 and 8).

In Fig. 2, we present the simulated trajectories of f (t) for
the three PDFs of P(τ) [poissonian, gaussian, and power-law]
for the choice of the uniform distribution P( f ).

C. Ergodicity relation

For a dynamic quantity Q of interest its ensemble-averaged
quantity 〈Q〉 over the active noise f (t) is obtained by taking
the average over both the amplitude { fi} and duration time
{τi}, namely, 〈Q〉 = 〈Q〉 fi,τi

. For the f (t) considered in our
study, we test whether the ergodic relation holds such that
the average over {τi} is replaced by the time average, that is,
〈Q〉 fi,τi

= 〈Q〉 fi . In Sec. 2 the ensemble-averaged autocorre-
lation of f (t), 〈 f (t) f (t + ∆t)〉 fi,τi

, is evaluated within Eq. (3)
which is the time-averaged one 〈 f (t) f (t + ∆t)〉 fi . We here ex-
amine the ergodic relation of this quantity. For this, in Fig. A1,
we evaluate both quantities for increasing lengths of t and T ,
and check the convergence of both quantities as t and T are
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A2

increased. In each plot, the dotted lines are the ensemble-
averaged autocorrelation 〈 f (t) f (t + ∆t)〉 fi,τi

at t = 10, 103, and
105, which were numerically obtained through the average of
Eq. (2) over 105 sequences of {τi}. The solid lines are Eq. (3),
〈 f (t) f (t + ∆t)〉 fi for T = 10, 103, and 105. The three panels,
respectively, present the cases for the poissonian (Left), gaus-
sian (Middle), and the power-law of 1 < α < 2 (Right) PDFs
that used in our study. The results convincingly show that
the ergodicity holds for the f (t) investigated throughout the
study; for the poissonian and gaussian P(τ) both averages are
almost indistinguishable at the investigated times, demonstrat-
ing that ergodicity is fulfilled as quickly as t (or T ) is larger
than the average duration time. For the power-law case, the
convergence is slower than the two cases; one can see that
both quantities are closer to each other as t and T are increas-
ing. When a sufficiently large time is reached (t = 105) both
quantities are converged.

A3. LANGEVIN DYNAMICS SIMULATIONS

Once a set of the active noise f (t) are prepared by the pro-
tocols described above, it is straightforward to carry out the

numerical simulation of the Langevin equations (1) & (27).
For the underdamped Langevin model Eq. (1), we solve it in
the scheme of the Euler method and recursively obtain the ve-
locity and position of a particle in unit of timestep δt(= 0.001)
as in the following:

v(t + δt) = (1 − δt)v(t) + [
√

2/δtζ + f (t)]δt, (A4)
x(t + δt) = x(t) + v(t)δt, (A5)

where we put m = β = γ = 1 and ζ is a random number from
a gaussian PDF of unit variance. The Box-Müller method was
used for generating the gaussian random number [2]. Dur-
ing the integration the evolution of f (t) is given by the cho-
sen sample f (t) prepared in advance. For the overdamped
Langevin equation (27), the position of a particle is obtained
through the recursive relation

x(t + δt) = x(t) + [
√

2/δtζ + f (t)/γ]δt (A6)

where we put γ = 1 and D = 1/[γβ] = 1.
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FIG. A1. Ergodicity test for the autocorrelation function of the active noise f (t). The ensemble-averaged autocorrelation 〈 f (t) f (t + ∆t)〉 fi ,τi is
compared to the time-averaged counterpart 〈 f (t) f (t + ∆t)〉 fi (Eq. (3) from a single f (t) in [0, T ]). From Left to Right, the results correspond
to the cases: poissonian (Left), gaussian (Middle), and the power-law (Right). In the plots, the dotted lines indicate the ensemble-averaged
autocorrelation at t = 10 (blue), 103 (magenta), and 105 (dark green). It was obtained by averaging Eq. (2) over 105 sequences of {τi}. Solid
lines represent the time-averaged autocorrelation, Eq. 2), for T = 10 (red), 103 (violet) and 105 (cyan). The active noises f (t) were generated
with the parameters: σ = 1, τc = 10 (poissonian) στ = 1 (gaussian), and α = 1.2 (power-law).
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