Appendix: Langevin dynamics driven by a telegraphic active noise
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Al. DERIVATION OF THE PROPAGATOR EQ. (7)

Here we present the detail of derivation for the propagator
Eq. from Eq. (@) through the gaussian integrals. For this
purpose, we use an useful identity relation in the gaussian in-
tegral

Nledxl o~ aXi+b e y=(X1 +A1 Xo+ B Cy

— Nze—(Xz+AzXo+Bz)2/C2 , (AD)

where the normalization constants are N' = 1/+fcx, N1 =
1/+Cym, and N> = 1/+/C,m, and the relations between A;,
B;, and C; [i = 1] are given by

Ais1 = —aA;, B =-aBi+b, Cii=da’Ci+c. (A2)

We apply for this integral rule to X, in Eq. (AT such that
the R.H.S term is integrated over X, with a weight function
NeXs+aXatbP/e  Then, we get NyeX3+4:X0+Bs7/Cs with the
recursion relation Eq. (A2) [i = 2] and N3 = 1/ V/Cin.

First, we consider the propagator II[v(t; + 7;)[v(#;)] be-
tween two successive transition times where f(t) = f; dur-
ing the time interval ¢ € [f;,#; + 7;], see Fig. E} Putting
Al =a=vy5t—1,B =b=—fét,and C; = ¢ = 4yB7'61,
and repeating the integrations over X, = v(#; + uot), where
u € 1{0,...,n} is the index used for discretizing the time inter-
val T; = nét with n — oo, one can obtain I [v(t; + 7;)|v(t;)] =

VI/[C,r]e WA+ At +Bal Co \yith

Ay == (-a)' = =",

C,=c 1_—02’1 = 2ﬁ71 (1 — e—ZyT,v) (A3)
" 1 +a2 '
It is straightforward to obtain the propagator

I [v(t + Af)v(r)] for an arbitrary time interval At from
the above relation. For all the transition times f;, fj11,...,;
in between t and f + Az, we repeat the same gaussian in-
tegral to get TT[v(t + ADW(D)] = [dv(t;)--- [dv)I[v(t +
ANV )] -+ TVt VTV After
this integration, we arrive at the expression shown in Eq. (7).

A2. GENERATION OF THE NOISE f(z)

The telegraphic noise f(#) in our model is generated by re-
alizing the two random sequences of the noise amplitude {f;}
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and duration time {r;}. The random number f; is i.i.d. from
the PDF P(f) and 7; is i.i.d. from the PDF of P(r).

A. The noise duration time {7;}

The sequence {7;} is generated for the three distinct PDFs
of P(r) as summarized in Tab. 1. The exponentially dis-
tributed random number was generated using the uniform ran-
dom number in [0, 1) via the inverse transform sampling [[1].
The gaussian random number was generated using the stan-
dard Box-Miiller transform [2]]. For the power-law case, we
considered the PDF P(1) = m(r/rmm)‘“*”) for
T € [Tmin, T'] and T, = 1. The random number governed by
this P(r) was generated through its inverse cumulative func-
tion {X|X = Tyuuu /% X < T} where u is a uniformly dis-
tributed random number u € [0, 1).

B. The noise amplitude {f}}

We considered three distinct PDFs of P(f) for generat-
ing the random sequence {f;}. Our primary model for the
multiple-states f; is a uniform distribution in an interval (f; €
[—fo, fol). The uniformly distributed random number was
generated using the method in Numerical Recipes in For-
tran [2]]. The second model is a gaussian model for the dis-
tribution of {f;}, implemented using the same Box-Miiller
method above [2]]. The third one is the dichotomous noise
model P(f) = 16(f + fo) + 36(f — fo), which was imple-
mented for the study of two-state systems including the noisy
Lévy walks (Figs.[7]and g).

In Fig. 2] we present the simulated trajectories of f(r) for
the three PDFs of P(t) [poissonian, gaussian, and power-law]
for the choice of the uniform distribution P(f).

C. Ergodicity relation

For a dynamic quantity Q of interest its ensemble-averaged
quantity (Q) over the active noise f(f) is obtained by taking
the average over both the amplitude {f;} and duration time
{7:}, namely, (@) = (Q) .. For the f(¢) considered in our
study, we test whether the ergodic relation holds such that
the average over {7;} is replaced by the time average, that is,
(Dfir, = @ In Sec. [2| the ensemble-averaged autocorre-
lation of f(z), (f(t)f(t + At))ﬁm, is evaluated within Eq. (3)

which is the time-averaged one (f(2)f(z + A1) .. We here ex-
amine the ergodic relation of this quantity. For this, in Fig.
we evaluate both quantities for increasing lengths of ¢ and 7,
and check the convergence of both quantities as # and T are
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increased. In each plot, the dotted lines are the ensemble-
averaged autocorrelation (f (1) f(t + A1)}, . atz = 10, 103, and
10°, which were numerically obtained through the average of
Eq. @) over 103 sequences of {7;}. The solid lines are Eq. (3),
(f(Of(t+ Ap), for T = 10, 10°, and 10°. The three panels,
respectively, present the cases for the poissonian (Left), gaus-
sian (Middle), and the power-law of 1 < @ < 2 (Right) PDFs
that used in our study. The results convincingly show that
the ergodicity holds for the f(¢) investigated throughout the
study; for the poissonian and gaussian P(7) both averages are
almost indistinguishable at the investigated times, demonstrat-
ing that ergodicity is fulfilled as quickly as ¢ (or T') is larger
than the average duration time. For the power-law case, the
convergence is slower than the two cases; one can see that
both quantities are closer to each other as t and T are increas-
ing. When a sufficiently large time is reached (t = 10°) both
quantities are converged.

A3. LANGEVIN DYNAMICS SIMULATIONS

Once a set of the active noise f(f) are prepared by the pro-
tocols described above, it is straightforward to carry out the

A2

numerical simulation of the Langevin equations (I)) & 27).
For the underdamped Langevin model Eq. (), we solve it in
the scheme of the Euler method and recursively obtain the ve-
locity and position of a particle in unit of timestep 5z(= 0.001)
as in the following:

v(t + 0t) = (1 = otw(t) + [V2/6tL + f(D)]ot,
x(t + 6t) = x(1) + v(1)dt,

(A4)
(A5)

where we put m = 8 =y = 1 and { is a random number from
a gaussian PDF of unit variance. The Box-Miiller method was
used for generating the gaussian random number [2]. Dur-
ing the integration the evolution of f(¢) is given by the cho-
sen sample f(#) prepared in advance. For the overdamped
Langevin equation (27), the position of a particle is obtained
through the recursive relation

x(t + 6t) = x(t) + [V2/6t + f(1)]y]ot (A6)

where we puty = land D = 1/[yB] = 1.
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FIG. Al. Ergodicity test for the autocorrelation function of the active noise f(r). The ensemble-averaged autocorrelation (f(£)f(z + At)), ., is
compared to the time-averaged counterpart {f(2)f(z + At)); (Eq. (3) from a single f(¢) in [0, T1). From Left to Right, the results correspond
to the cases: poissonian (Left), gaussian (Middle), and the power-law (Right). In the plots, the dotted lines indicate the ensemble-averaged
autocorrelation at ¢ = 10 (blue), 10° (magenta), and 10° (dark green). It was obtained by averaging Eq. @) over 10° sequences of {r;}. Solid
lines represent the time-averaged autocorrelation, Eq. , for T = 10 (red), 103 (violet) and 10° (cyan). The active noises f(f) were generated
with the parameters: o = 1, 7. = 10 (poissonian) o = 1 (gaussian), and @ = 1.2 (power-law).
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