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APPENDIX

DERIVATION OF THE APPROXIMATION

The observed data are collected using retrospective case-control sampling design, i.e. the genetic and environmental variables are sampled conditionally on the clinical diagnosis. The likelihood function of the observed data is based on the probability   and hence we define .                                (4) 
The usual logistic regression model with the clinically diagnosed disease status as the outcome variable is 
,                               (5)
We are interested to find an analytic solution that relates parameters from the misspecified model (5) to the parameters and  from the true model (4).

The next steps are motivated by the developments in Kullback (1959), Neuhaus (1999). Kullback (1959) showed that parameters estimated in the misspesified model (4) converge to values that minimize the Kullback-Leibler divergence between the true and false models with expectations taken with respect to the true model, i.e. 
.                                    (5)
We first examine the true model (1) and misspecified model (3). 

We first derive an approximation to the relationship between the parameters of the misspecified model (3) to the parameters of the true model (1).
Derivative of the Kullback-Leibler divergence (5) with respect to parameters of the misspecified model are 



Define , then taking derivatives of Kullback-Leibler divergence (5) with respect to  we arrive to the following system of equations 
;               (A1)
;

;

Values of  such that 
                                        (A2)

for all  solve the system of equations (A2). Hence values of  for which and   for any solve the system of equations (A2).

We first consider a setting with . By definition, . Because values of  for which  solve the system of equations (7), 

 = .                       (A3)

In the next equations we apply the same arguments for the other parameters.

;                                                                         (A4)

;                                                                             (A5)

.                                                                                 (A6)

While the equations (A2)-(A6) describe the relationship between the parameters  and , it is not clear what the relationship is. Taylor series expansion around 0 provides convenient approximation in the form
                 (A7)
;                                                                                   (A8)            
                       (A9)
.                                                                                            (A10)      



It can be easily seen that when a variable  is included in the model, 
;                                                                                                     (A11)
                                     (A12)
;                                      (A13)
                                (A14) 
 .                                                              (A15)

With Taylor series expansion the system of equations becomes (A11)-(A15)
;                                                                                  (A11.1)
;         (A12.1)
;                                                                         (A13.1)
;                                                                       (A14.1) 
                                                             (A15.1)
We next suppose that the true model is (2), while the parameters are estimated based on a misspecified model (3).
By definition, . Because values of parameters  for which  minimize the Kullback-Leibler divergence (5), . Algebraic derivations show that then  and Taylor series expansion around zero arrives at an approximation  Similar derivations apply to the other parameters:
                                                             (A16)
                                        (A17)
               (A18)
When an environmental variable  that does not interact with the genotype is in the model, then the formulas are as follows:
When an environmental variable  that does not interact with the genotype is in the model, then the formulas are as follows:
;                                                                                                    (A19)
      (A20)
      (A21)
                                (A22)
      (A23)
With Taylor series expansion the system of equations (A19)-(A23) becomes
;                                                                                               (A19.1)
                                           (A20.1)

                                                            (A21.1)
                           (A22.1)
                                                                  (A23.1)


















	True model (1)
	Misspecified Model (3)

	
Parameter
	
True Value
	
Parameter
	
Empirical average
estimate
	
Empirical SD
	
Approximation (A11)-(A15)

	
	0.41
	
	0.28
	0.10
	0.26

	
	2.08
	
	1.80
	0.09
	1.30

	
	0
	
	0.13
	0.36
	0.11

	
	0
	
	-0.00
	0.05
	0

	
	-0.08
	
	-0.06
	0.05
	-0.06



Supplementary Table 1. Estimates of coefficients obtained empirically as an average across 500 simulated datasets with 3,000 cases and 3,000 controls. The genetic variable is Bernoulli with frequency 0.1. The environmental variables  are Bernoulli with frequencies 14%, 50%, and 52%, respectively. The true diagnosis is simulated based on the model (1) with coefficients   and The clinical-pathological diagnoses relationship is defined as  and . Coefficients s are estimated based on misspecified model (3). 











	True model (2)
	Misspecified Model (3)

	
Parameter
	
True Value
	
Parameter
	
Empirical average
	
Empirical SD
	Approximation (A16)-(A22)

	
	-0.69
	
	-0.38
	0.10
	-0.39

	
	1.3
	
	1.08
	0.08
	1.08

	
	0.10
	
	-0.10
	0.25
	-0.05

	
	0.10
	
	0.10
	0.05
	0.10

	
	-0.08
	
	-0.09
	0.05
	-0.08



Supplementary Table 2. Estimates of coefficients obtained empirically as an average across 500 simulated datasets with 3,000 cases and 3,000 controls. Risk of the disease of interest is defined in a set of parameters ; while the risk of the nuisance disease is parametrized by  Frequency of ApoE 4 allele in the population is 14%. Variables  and  are Bernoulli with frequencies 0.50 and 0.52, respectively. Frequencies of the disease of interest and the nuisance disease are  Frequency of the nuisance disease within the clinical diagnosis varies by ApoE4 status )=0.36 and )=0.06.










	True model (2)
	Misspecified Model (3)

	
Parameter
	
True Value
	
Parameter
	
Empirical average
	
Empirical SD
	Approximation (A16)-(A22)

	
	-0.69
	
	-0.33
	0.14
	-0.39

	
	1.3
	
	1.12
	0.12
	1.08

	
	0.10
	
	-0.10
	0.30
	-0.05

	
	0.10
	
	0.10
	0.11
	0.10

	
	-0.08
	
	-0.03
	0.12
	-0.08



Supplementary Table 3. Estimates of coefficients obtained empirically as an average across 500 simulated datasets with 2,000 cases and 1,000 controls. Risk of the disease of interest is defined in a set of parameters ; while the risk of the nuisance disease is parametrized by  Frequency of ApoE 4 allele in the population is 14%. Variables  and  are Bernoulli with frequencies 0.50 and 0.52, respectively. Frequencies of the disease of interest and the nuisance disease are  Frequency of the nuisance disease within the clinical diagnosis varies by ApoE4 status )=0.36 and )=0.06.







	




True model (2)
	Misspecified Model (3)

	
	





Parameter
	



Approximation (A16)-(A22)
	Rates of nuisance disease state are overestimated for both  carriers and non-carriers 
	Rates of nuisance disease state are underestimated for both  carriers and non-carriers
	Rates of nuisance disease state are overestimated  for  carriers and underestimated fornon-carriers

	
Parameter
	
True Value
	
	
	
Empirical average
	
Empirical SD
	
Empirical average
	
Empirical SD
	
Empirical average
	
Empirical SD

	
	-0.69
	
	-0.39
	-0.34
	0.17
	-0.37
	0.16
	-0.39
	0.20

	
	1.3
	
	1.08
	1.14
	0.14
	1.12
	0.15
	1.13
	0.19

	
	0.10
	
	-0.05
	-0.08
	0.33
	-0.11
	0.33
	-0.11
	0.39

	
	0.10
	
	0.10
	0.10
	0.07
	0.11
	0.09
	0.10
	0.10

	
	-0.08
	
	-0.08
	-0.05
	0.10
	-0.09
	0.12
	-0.12
	[bookmark: _GoBack]0.12



Supplementary Table 3. Estimates of coefficients obtained empirically as an average across 500 simulated datasets with 2,000 cases and 1,000 controls. Risk of the disease of interest is defined in a set of parameters ; while the risk of the nuisance disease is parametrized by  Frequency of ApoE 4 allele in the population is 14%. Variables  and  are Bernoulli with frequencies 0.50 and 0.52, respectively. Frequencies of the disease of interest and the nuisance disease are  Frequency of the nuisance disease within the clinical diagnosis varies by ApoE4 status )=0.36 and )=0.06.


[image: ] 
Supplementary Figure 1A: Estimates of  obtained empirically as an average across 500 simulated datasets  (EMP) with 3,000 cases and 3,000 controls; using the theoretical formulae (A11)-(A15) (TH); and using the approximation (A11.1)-(A15.1) (APX). Coefficients s are estimated based on misspecified model (3). 
The genetic variable is Bernoulli with frequency 0.1. The environmental variables  are Bernoulli with frequencies 14%, 50%, and 52%, respectively. The true diagnosis is simulated based on the model (1) with coefficients   and The clinical-pathological diagnoses relationship is defined as  and . 
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Supplementary Figure 1B: Estimates of  obtained empirically as an average across 500 simulated datasets  (EMP); with 3,000 cases and 3,000 controls; using the theoretical formulae (A11)-(A15) as the difference in logs (TH); and using the approximation (A11)-(A15) (APX). Coefficients s are estimated based on misspecified model (3). The genetic variable is Bernoulli with frequency 0.1. The environmental variables  are Bernoulli with frequencies 14%, 50%, and 52%, respectively. The true diagnosis is simulated based on the model (1) with coefficients   and The clinical-pathological diagnoses relationship is defined as  and . 


[image: ]
Supplementary Figure 1C: Estimates of  obtained empirically as an average across 500 simulated datasets  (EMP); with 3,000 cases and 3,000 controls; using the theoretical formulae (A11)-(A15) as the difference in logs (TH); and using the approximation (A11)-(A15) (APX). Coefficients s are estimated based on misspecified model (3). The genetic variable is Bernoulli with frequency 0.1. The environmental variables  are Bernoulli with frequencies 14%, 50%, and 52%, respectively. The true diagnosis is simulated based on the model (1) with coefficients   and The clinical-pathological diagnoses relationship is defined as  and . 
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Supplementary Figure 1D: Estimates of  obtained empirically as an average across 500 simulated datasets  (EMP); with 3,000 cases and 3,000 controls; using the theoretical formulae (A11)-(A15) as the difference in logs (TH); and using the approximation (A11)-(A15) (APX). Coefficients s are estimated based on misspecified model (3).  The genetic variable is Bernoulli with frequency 0.1. The environmental variables  are Bernoulli with frequencies 14%, 50%, and 52%, respectively. The true diagnosis is simulated based on the model (1) with coefficients   and The clinical-pathological diagnoses relationship is defined as  and . 



[image: ]
Supplementary Figure 1E: Estimates of  obtained empirically as an average across 500 simulated datasets  (EMP) with 3,000 cases and 3,000 controls; using the theoretical formulae (A11)-(A15) as the difference in logs (TH); and using the approximation (A11)-(A15) (APX). Coefficients s are estimated based on misspecified model (3). The genetic variable is Bernoulli with frequency 0.1. The environmental variables  are Bernoulli with frequencies 14%, 50%, and 52%, respectively. The true diagnosis is simulated based on the model (1) with coefficients   and The clinical-pathological diagnoses relationship is defined as  and . 
 [image: ]
Web Supplementary Figure 2A: Estimates of  obtained empirically as an average across 500 simulated datasets  (EMP) with 3,000 cases and 3,000 controls; using the theoretical formulae (A11)-(A15) (TH); and using the approximation (A11.1)-(A15.1) (APX). Coefficients s are estimated based on misspecified model (3). 
The genetic variable is Bernoulli with frequency 0.1. The environmental variables  are Bernoulli with frequencies 14%, 50%, and 52%, respectively. The true diagnosis is simulated based on the model (1) with coefficients   and The clinical-pathological diagnoses relationship is defined as  and , but in the theoretical derivations is underestimated to be  and .
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Web Supplementary Figure 2B: Estimates of  obtained empirically as an average across 500 simulated datasets  (EMP); with 3,000 cases and 3,000 controls; using the theoretical formulae (A11)-(A15) as the difference in logs (TH); and using the approximation (A11)-(A15) (APX). Coefficients s are estimated based on misspecified model (3). The genetic variable is Bernoulli with frequency 0.1. The environmental variables  are Bernoulli with frequencies 14%, 50%, and 52%, respectively. The true diagnosis is simulated based on the model (1) with coefficients   and The clinical-pathological diagnoses relationship is defined as  and , but in the theoretical derivations is underestimated to be  and .

[image: ]
Web Supplementary Figure 2C: Estimates of  obtained empirically as an average across 500 simulated datasets  (EMP); with 3,000 cases and 3,000 controls; using the theoretical formulae (A11)-(A15) as the difference in logs (TH); and using the approximation (A11)-(A15) (APX). Coefficients s are estimated based on misspecified model (3). The genetic variable is Bernoulli with frequency 0.1. The environmental variables  are Bernoulli with frequencies 14%, 50%, and 52%, respectively. The true diagnosis is simulated based on the model (1) with coefficients   and The clinical-pathological diagnoses relationship is defined as  and , but in the theoretical derivations is underestimated to be  and .
[image: ]
Web Supplementary Figure 3A: Estimates of  obtained empirically as an average across 500 simulated datasets  (EMP); with 3,000 cases and 3,000 controls; using the theoretical formulae (A11)-(A15) as the difference in logs (TH); and using the approximation (A11)-(A15) (APX). Coefficients s are estimated based on misspecified model (3). The genetic variable is Bernoulli with frequency 0.1. The environmental variables  are Bernoulli with frequencies 14%, 50%, and 52%, respectively. The true diagnosis is simulated based on the model (1) with coefficients   and The clinical-pathological diagnoses relationship is defined as  and , but in the theoretical derivations is overestimated to be  and .
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Web Supplementary Figure 3B: Estimates of  obtained empirically as an average across 500 simulated datasets  (EMP); with 3,000 cases and 3,000 controls; using the theoretical formulae (A11)-(A15) as the difference in logs (TH); and using the approximation (A11)-(A15) (APX). Coefficients s are estimated based on misspecified model (3). The genetic variable is Bernoulli with frequency 0.1. The environmental variables  are Bernoulli with frequencies 14%, 50%, and 52%, respectively. The true diagnosis is simulated based on the model (1) with coefficients   and The clinical-pathological diagnoses relationship is defined as  and , but in the theoretical derivations is underestimated to be  and .
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Web Supplementary Figure 4A: Empirical estimates (EMP) and approximation (AX) of parameter estimates when the data are simulated according to the risk model (2) while parameters are estimated based on the model (3). EMPs are the averages across 500 simulated datasets with 3,000 cases and 3,000 controls. Approximations are obtained using (A20)-(A23). We simulate the disease status D=1 vs. D=0 based on parameters; and we simulate D= vs. D=0 using  with main effects of (Age) and (Sex) that are the same as for D=1 vs. D=0. 
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Web Supplementary Figure 4B: Empirical estimates (EMP) and approximation (AX) of parameter estimates when the data are simulated according to the risk model (2) while parameters are estimated based on the model (3). EMPs are the averages across 500 simulated datasets with 3,000 cases and 3,000 controls. Approximations are obtained using (A20)-(A23). We simulate the disease status D=1 vs. D=0 based on parameters and we simulate D= vs. D=0 using  with main effects of (Age) and (Sex) that are the same as for D=1 vs. D=0. 
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