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Appendix21

A Modeling of the Remote Sensing Reflectance Below the22

Surface for Shallow Water23

As shown in section 2, the remote sensing reflectance below the surface for shallow water is24

modeled as follows:25

Rsh−rs (λ) = R−
rs(λ)

[
1 −Ars,1e

−zB(Kd(λ)+kuW (λ))
]

+Ars,2R
b
rs(λ)e−zB(Kd(λ)+kuB(λ)) (A.0.0.1)

∗Corresponding Author
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where on the right-hand side the first term is the remote sensing reflectance of a water slab with26

thickness zB , and the second term is the remote sensing reflectance of the lakes’s bottom seen at27

the lake surface within the water column. Ars,1 = 1.1576 and Ars,2 = 1.0389 are fixed empirical28

constant defined in [7]. Rbrs(λ) is the lake bottom reflectance and is calculated as follows:29

Rbrs(λ) =

N−1∑
n=0

fnBnan(λ) (A.0.0.2)

In A.0.0.2, six types of bottom surfaces are considered. Hence six albedos (irradiance reflectance of30

a surface is called albedo) an(λ) are considered at the same time. The surface albedos spectra are31

provided for six different types of bottom. fn is the areal fraction of bottom surface type n, and32 ∑N−1
n=0 fn = 1. Bn is the proportion of radiation that is reflected to the sensor. [4] and so do we33

consider all the surface types as Lambertian surfaces (isotropic reflection) hence Bn = 1/π = 0.31834

sr−1 for all n.35

Kd, kuW , and kuB measure the radiation attenuation within the water slab (attenuation for down-36

welling irradiance, upwelling radiance reflected in the water, and upwelling radiance reflected by37

the bottom respectively) and they are computed as below:38

Kd(λ) = k0
a(λ) + bb(λ)

cosΘ′sun
(A.0.0.3)

kuW (λ) =
a(λ) + bb(λ)

cosΘ
′
V

[1 + ωb(λ)]
3.5421

[
1 − 0.2786

cosΘ′sun

]
(A.0.0.4)

kuB(λ) =
a(λ) + bb(λ)

cosΘ
′
V

[1 + ωb(λ)]
2.2658

[
1 − 0.0577

cosΘ′sun

]
(A.0.0.5)

k0 depends on the scattering phase function. It usually set equal to 1.0395 for case-1 water and39

equal to 1.0546 for case-2 water ([4] default).40

The remote sensing reflectance above the water surface can be model in different ways, the following41

one is set by default in [4] and used here:42

Rrs(λ) =
(1 − σ)

(
1 − σ−

L

)
n2
W

· R−
rs(λ)

1 − ρuQR
−
rs(λ)

+Rsurfrs (λ) (A.0.0.6)

On the right-hand side, the first term measures the reflection in the water, the second at the43

surface. nW = 1.33 is the water index of refraction. Q = 5 sr is defined in the previous sections.44

σ is the reflection factor for the downwlling irradiance above the water surface. It is set equal to45

0.03 by default. σ−
L is the reflection factor for the upwelling radiance below the water surface. It is46

computed as follows:47

σ−
L (Θv) = ρL(Θv) =

1

2

∣∣∣∣∣sin2(Θv − Θ
′

v)

sin2(Θv + Θ′v)
+
tan2(Θv − Θ

′

v)

tan2(Θv + Θ′v)

∣∣∣∣∣ (A.0.0.7)
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where the viewing angles are related by the Snell’s law:48

nW sinΘ
′

v = nairsinΘv (A.0.0.8)

ρu is the reflection factor for the upwelling irradiance below the water surface. It is set equal to49

0.54 by default. R−
rs(λ) is the remote sensing reflectance below the surface for deep water described50

previously. If shallow water is considered, R−
rs(λ) is replaced with Rsh−rs (λ), which is described51

above as well.52

Rsurfrs (λ) is the reflection at the surface, also called specular reflectance, and is modeled as follows:53

Rsurfrs (λ) = ρL
Ls(λ)

Ed(λ)
(A.0.0.9)

If the wavelength-independent model is selected A.0.0.9 is replaced by:54

Rsurfrs =
ρL
π

(A.0.0.10)

ρL is called the Fresnel reflectance and is given by A.0.0.7. Ls(λ) and Ed(λ) are the sky radiance55

and the downwelling irradiance above the water surface, respectively. In our software, we modeled56

these two quantities as in [4]. For the sake of completeness, they are reproduced here with a brief57

explanation.58

The downwelling irradiance Ed(λ) is modeled as follows:59

Ed(λ) = fddEdd(λ) + fdsEds(λ) (A.0.0.11)

Edd(λ) is the direct component of Ed(λ). It represents the sun disk in the sky as photon source.60

Eds(λ) is the component of Ed(λ) scattered from the sky and is the sum of two components:61

Eds(λ) = Edsr(λ) + Edsa(λ) (A.0.0.12)

Edsr(λ) measures the Rayleigh scattering. Edsa(λ) measures the aerosol scattering. fdd and fds are62

correction factors that correct the intensities of the light sources according to the illumination con-63

ditions. They allow simulation and measurements analysis at non-standerd illumination conditions64

[4]. Edd(λ), Edsr(λ), and Edsa(λ) are calculated in the following way:65

Edd(λ) = E0(λ)Tr(λ)Taa(λ)Tas(λ)Toz(λ)To(λ)Twv(λ)cosΘsun (A.0.0.13)

Edsr(λ) =
1

2
E0(λ)

(
1 − T 0.95

r (λ)
)
Taa(λ)Tas(λ)Toz(λ)To(λ)Twv(λ)cosΘsun (A.0.0.14)

Edsa(λ) = E0(λ)T 1.5
r (λ)Taa(λ) (1 − Tas(λ))Toz(λ)To(λ)Twv(λ)cosΘsunFa (A.0.0.15)
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cosΘsun is the solar zenith angle. E0(λ) is the solar irradiance coming from the sun. It is corrected66

for orbital eccentricity and sun-earth distance. It is imported from the database. Fa is the aerosol67

forward scattering probability and is modeled as follows:68

Fa = 1 − 0.5e[(B1+B2cosΘsun)cosΘ] (A.0.0.16)

where:69

B1 = B3 [1.459 +B3 (0.1595 + 0.4129B3)] (A.0.0.17)

B2 = B3 [0.0783 +B3 (−0.3824 − 0.5874B3)] (A.0.0.18)

B3 = −0.1417α+ 0.82 (A.0.0.19)

where α is the Angstrom exponent and ranges from 0.2 to 2 [4].70

Tr(λ), Taa(λ), Tas(λ), Toz(λ), To(λ), and Twv(λ) are the transmittance of the atmosphere after71

Rayleigh scattering, aerosol absorption, aerosol scattering, ozone absorption, oxygen absorption,72

and water vapour absorption respectively. Their equations follow:73

Tr(λ) = e
−M
′

115.640λ4−1.335λ2 (A.0.0.20)

Taa(λ) = e−(1−ωa)τa(λ)M (A.0.0.21)

Tas(λ) = e−ωaτa(λ)M (A.0.0.22)

Toz(λ) = e−aoz(λ)HozMoz (A.0.0.23)

To(λ) = e

−1.41ao(λ)M
′

[1+118.3a0(λ)M
′ ]

0.45

(A.0.0.24)

Twv(λ) = e
−0.2385awv(λ)·WV ·M

[1+20.07awv(λ)·WV ·M]0.45 (A.0.0.25)

M
′

is the atmospheric path length corrected for nonstandard atmospheric pressure P :74

M
′

=
M · P

1013.25
(A.0.0.26)
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M is the atmospheric path length:75

M =
1

cosΘsun + a (90◦ + b− Θsun)
−c (A.0.0.27)

where a = 0.50572, b = 6.079975◦, and c = 1.253 [4].76

Moz is the ozone atmospheric path length:77

Moz =
1.0035

(cos2Θsun + 0.007)
0.5 (A.0.0.28)

ωa is the aerosol single scattering albedo:78

ωa = (−0.0032AM + 0.972) e3.06·10−4RH (A.0.0.29)

where AM is the air mass type, and RH is the relative humidity. AM ranges from 1 (for open-ocean79

aerosols) to 10 (continental water aerosols). RH ranges from 46 to 91%.80

τa(λ) is the aerosol optical thickness:81

τa(λ) = β

(
λ

λa

)−α

(A.0.0.30)

α is the Angstrom exponent defined above. λa = 550 nm is the reference wavelength [4]. β is the82

turbidity coefficient and is modeled as follows:83

β = τa(550) = 3.91
Ha

V
(A.0.0.31)

where V is the horizontal visibility ranging from 8 to 24 km, and Ha is the aerosol scale height84

which is set equal to 1 km.85

WV is the water vapor concentration and ranges from 0 to 5 cm.86

aoz(λ), ao(λ), and awv(λ) are the absorption spectra of ozone, oxygen, and water vapour respectively87

and they are imported from file.88

The sky radiance Ls(λ) is parameterized as follows:89

Ls(λ) = gddEdd(λ) + gdsrEdsr(λ) + gdsaEdsa(λ) (A.0.0.32)

where the downwelling irradiances are given above, and gdd = 0.02, gdsr = 1
π , and gdsa = 1

π are the90

irradiances intensities in sr−1.91

As stated above the RT model used in GLAM BioLith–RT is the same used in [4, 7]. Thus more92

details are available in those references.93
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B GLAM BioLith-RT: software implementation and features94

GLAM BioLith-RT is entirely coded in Matlab and available at https://github.com/nsidc/HMA GLAM BioLith-95

RT 5. All the detailed information on how to run the code are given in the Readme.txt file provided96

with the code. All the input spectra to run the simulations are taken from the database in the folder97

DATA available in WASI4 package http://www.ioccg.org/data/software.html. For the constrained98

optimization framework the Matlab function fmincon is used. For the Bayesian inversion frame-99

work, the MCMC toolbox developed for Matlab available at http://helios.fmi.fi/ lainema/mcmc/ is100

used.101

In the GLAM BioLith-RT package, the user finds several data sets, functions, and scripts to compute102

the quantities of interest. The most important are the following:103

• script main.m for:104

– Rrs(λ) simulation via the function AOP Rrs.m given the input select by the user105

– Water component concentrations retrieval given the observed and the simulated Rrs(λ):106

constrained optimization framework via the function InvModelBioLithRT Copt.m and107

Bayesian inversion framework via the function InvModelBioLithRT Bopt.m108

• function AOP Rrs.m for Rrs(λ) simulation109

• function InvModelBioLithRT Copt.m: objective function for the constrained optimization to110

concentrations retrieval111

• function InvModelBioLithRT Bopt.m: objective function for the Bayesian inversion to con-112

centrations retrieval113

It is up to the user whether to use the software only for Rrs(λ) simulation (forward modeling mode114

only) or to retrieve water component concentrations (inverse modeling mode). The inverse modeling115

mode is the default option. To switch only to the forward modeling mode, the instructions are given116

below.117

Inverse modeling mode: inputs118

Following is the list of the input for the inverse modeling mode:119

• Observed remote sensing reflectance at different wavelengths. The wavelength range allowed120

is from 400 to 700 nm (visible). Within the allowed range, the user can enter any wavelength121

desired122

• Case water selection. The user can choose to work with either case–1 or case–2 water123

• View (camera) and Sun angle relative to the zenith, in degrees124

• Water component concentrations (assumed to be constant for the depth of the water slab):125

phytoplankton (ph), colored dissolved organic matter (CDOM) and suspended particle matter126

(SPM)127

• Suspended particle matter grain size (default 33.6 µm)128

• Selection between deep water or shallow water (when the bottom contribution is not negligible)129

6

https://github.com/nsidc/HMA_GLAM_BioLith-RT_5
https://github.com/nsidc/HMA_GLAM_BioLith-RT_5
https://github.com/nsidc/HMA_GLAM_BioLith-RT_5
http://www.ioccg.org/data/software.html
http://helios.fmi.fi/~lainema/mcmc/


• Bottom depth and the areal fraction of bottom surface, when shallow water is selected130

• Quantities related to the remote sensing reflectance above the water surface: irradiance inten-131

sities, intensities of light sources, Angstrom exponent, atmospheric pressure, relative humidity,132

scale height for ozone, scale height of the precipitable water in the atmosphere.133

The default input to run the Bayesian inversion are: number of parameters to be tuned, the tuned134

parameters first guess to start the MCMC sampling process, prior distributions for the fit param-135

eters, likelihood function, initial error variance, number of simulations for the MCMC, and the136

algorithm to perform the MCMC sampling. More inputs are available, and the default settings137

can be changed, detailed information are available at http://helios.fmi.fi/ lainema/mcmc/mcm-138

crun.html.139

The wavelength is the predictor/control variable. By default the fit parameters are the water com-140

ponent concentrations and all the other parameters listed are considered as fixed in the optimization141

problem. However, the user can change the fit and fixed parameters according to the knowledge142

that he/she has about the water system of interest. That is, to obtain accurate results in the inverse143

modeling the uncertainty on the true values of the fixed parameters should be as low as possible.144

In the following section, a sensitivity analysis is presented to show how the inverse modeling results145

are sensitive to the uncertainty in the true value of the fixed parameters. The accuracy of the146

retrieval decreases as the uncertainty in the true value of the fixed parameters increases.147

Inverse modeling mode: default outputs148

Following is the list of the default outputs for the inverse modeling mode:149

• Simulated spectral remote sensing reflectance (Rrs0) given the water component concentra-150

tions estimated by the user151

• Objective function value (Res0) computed with Rrs0 versus the observed remote sensing152

reflectance Rrs obs153

• Retrieved concentrations and corresponding objective function value computed via the con-154

strained optimization framework155

• Simulated Rrs (Rrs fit) given the retrieved water component concentrations via the con-156

strained optimization framework157

• Retrieved concentrations probability distributions computed via the Bayesian inversion frame-158

work159

• Simulated Rrs (Rrs B) given the mean value of the retrieved water component concentrations160

probability distributions161

• Plot Rrs0, Rrs fit, Rrs B and Rrd obs versus wavelengths162

Forward modeling mode: for spectral remote sensing reflectance simulations163

If the user is only interested in spectral remote sensing reflectance simulations, then the option to164

use the forward mode only should be selected. How to switch to forward mode only is explained165

in detail in the Readme.txt. The inputs for the forward modeling mode are the same as for the166

inverse modeling mode except for the wavelengths range of interest that in this case needs to be167
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specified. The wavelength range allowed is from 400 to 700 nm (visible). Within the allowed range,168

the user can enter any wavelength desired. The outputs are the simulated spectral remote sensing169

reflectance Rrs0 and its plot versus the wavelengths.170
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