
Appendix A: Appendix: Stream function

A general relation between the velocity field and the stream function ψ can be expressed by

v = −∇× (ψ∇φ), (A1)

which implies ∇ · v = 0. As mentioned earlier, in the case of translational motion and spherical

coordinates only the radial component and the polar component of the velocity field are relevant

v = {vr, vθ, 0}. The velocity field in spherical coordinates is expressed in terms of the stream

function ψ(r, θ) as

vr =
−1

r2 sin θ

∂ψ(r, θ)

∂θ
, vθ =

1

r sin θ

∂ψ(r, θ)

∂r
. (A2)

The stream function satisfies [39]

−∇×∇×∇× v =
1

r sin θ
E4ψeφ (A3)

where E4 is a fourth order partial differential operator

E4 ≡ (E2)2 , E2 =

[
∂2

∂r2
+

sin θ

r2

∂

∂θ

(
1

sin θ

∂

∂θ

)]
. (A4)

In order to account for small viscosity perturbations also the stream function is expressed as

ψ = ψ0 + εψ1 + . . . . We take the curl of Eqs. (6a) and (7b). Inserting the stream function leads

to scalar equations for the leading and the first order momentum equations

O(ε0) : E4ψ0 = 0 (A5)

O(ε1) : E4ψ1 = h1(r, θ), (A6)

where h1(r, θ) = −r sin θ
(
∇η1 ×∇p0 + ∇× (∇η1 ·

[
∇v0 + (∇v0)T

])
eφ

depends on the leading

order solution.

Appendix B: Appendix: First order solution for the velocity

First, we express the boundary conditions ((7c) and (7d)) in terms of the stream function ψ1 .

The no-slip boundary conditions require that the first order velocity has to vanish at the surface

of a sphere:

vr1 =
−1

r2 sin θ

∂ψ1

∂θ
= 0 at |r| = 1 (B1a)

vθ1 =
1

r sin θ

∂ψ1

∂r
= 0 at |r| = 1 . (B1b)
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The quiescent fluid in the far-field requires:

∂θψ1

r2
→ 0 , and

∂rψ1

r
→ 0 for |r| → ∞ . (B1c)

We look for a solution in terms of the Gegenbauer functions {In}n (see C), which are eigen-

functions of the angular part of the E2 operator, and hence also of the E4 operator, with the

eigenvalues {−n(n − 1)}n and provide a complete orthogonal system. Assuming separation of

variables we make the ansatz

ψ1(r, θ) =
∞∑
n≥2

fn(r)In(ζ) , ζ = cos θ. (B2)

The corresponding first order velocity field is then obtained from Eq. (A2) and is expressed in

terms of Legendre’s polynomials Pn and Gegenbauer functions In

vr1 =
1

r2

∑
n≥2

fn(r)Pn(ζ) (B3a)

vθ1 =
1

r

∑
n≥2

f ′n(r)
In(ζ)

sin θ
. (B3b)

The restriction n ≥ 2 refers to the fact that the velocity field has singularities for the modes

n ∈ {0, 1} at θ ∈ [0, π] which lead to infinite tangential velocities. Further, we expand the

inhomogeneity h1(r, θ) in Eq. (A6) in Gegenbauer functions (see Eq. (C5))

h1(r, θ) =
∑
n≥2

Rn(r)In(ζ) . (B4)

The coefficients are calculated using Eq. (C7), from which it follows that the first two modes

R0(r), R1(r) = 0 always vanish. Inserting the ansatz (B3) and the expansion (B4) into Eq. (A6)

we obtain ∑
n≥2

In(ζ)E4
n(r)fn(r) =

∑
l≥2

Rl(r)Il(ζ ),

where the differential operator E4
n(r) is given by

E4
n(r) ≡ ∂4

∂r4
−
(

2

r2

∂2

∂r2
− 4

r3

∂

∂r
+

6

r4
− n(n− 1)

r4

)
n(n− 1). (B5)

In order to decouple Gegenbauer modes we apply the orthogonality of the Gegenbauer functions

under the scalar product given by Eq. (C2) to obtain

∀n≥2 : E4
n(r)fn(r) = Rn(r) . (B6)

For given functions Rn(r), which depend on the viscosity variation η1, each coefficient fn(r) of the

ansatz (B2) can be determined by an ODE with the differential operator E4
n(r). A solution for an

arbitrary inhomogeneity h1(r, θ) can be provided by the Green function integration. This requires

the knowledge of the Green function for each differential operator E4
n(r).
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Appendix C: Appendix: Gegenbauer functions

The Gegenbauer functions of degree −1/2 can be represented by Legendre Polynomials Pn

In(ζ) =
Pn−2(ζ)− Pn(ζ)

2n− 1
. (C1)

They are defined on the interval ζ ∈ [−1, 1] and for our pupose we choose ζ = cos θ with

θ ∈ [0, π]. The Gegenbauer functions are a complete orthogonal system with the relation

〈Im(ζ)|In(ζ)〉ζ =

∫ 1

−1

In(ζ)Im(ζ)

1− ζ2
dζ

=

 0 , m 6= n

2
n(n−1)(2n−1) , m = n

, n ≥ 2 (C2)

which is not valid for n ∈ {0, 1}. Further they satisfy the relation

∫ 1

−1
In(ζ)dζ =


2 , n = 0

2
3 , n = 2

0 , n 6= {0, 2}

(C3)

The first derivative of Gegenbauer functions is

dIn(ζ)

dζ
= −Pn−1(ζ) (C4)

An axisymmetric function f(θ) which first through nth derivatives are continuous f ∈ Cn([0, π])

can be expressed in terms of Gegenbauer functions and also its 1− nth derivatives

f(θ) =
∞∑
l=0

βl I (ζ) (C5)

∂kθ f(θ) =

∞∑
l=0

βkl I (ζ) , 1 ≤ k ≤ n . (C6)

The coefficients βl are defined as

βl =
1

2
l(l − 1)(2l − 1) 〈f(ζ)|Il(ζ)〉ζ

=
1

2
l(l − 1)(2l − 1)

∫ 1

−1
f(ζ)

Il(ζ)

1− ζ2
dζ . (C7)

The coefficients β0, β1 = 0 are zero by definition.
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