Appendix A: Appendix: Stream function

A general relation between the velocity field and the stream function ψ can be expressed by

$$
\begin{equation*}
\boldsymbol{v}=-\boldsymbol{\nabla} \times(\psi \boldsymbol{\nabla} \phi), \tag{A1}
\end{equation*}
$$

which implies $\boldsymbol{\nabla} \cdot \boldsymbol{v}=0$. As mentioned earlier, in the case of translational motion and spherical coordinates only the radial component and the polar component of the velocity field are relevant $\boldsymbol{v}=\left\{v_{r}, v_{\theta}, 0\right\}$. The velocity field in spherical coordinates is expressed in terms of the stream function $\psi(r, \theta)$ as

$$
\begin{equation*}
v_{r}=\frac{-1}{r^{2} \sin \theta} \frac{\partial \psi(r, \theta)}{\partial \theta}, \quad v_{\theta}=\frac{1}{r \sin \theta} \frac{\partial \psi(r, \theta)}{\partial r} \tag{A2}
\end{equation*}
$$

The stream function satisfies [39]

$$
\begin{equation*}
-\boldsymbol{\nabla} \times \boldsymbol{\nabla} \times \boldsymbol{\nabla} \times \boldsymbol{v}=\frac{1}{r \sin \theta} E^{4} \psi \boldsymbol{e}_{\phi} \tag{A3}
\end{equation*}
$$

where E^{4} is a fourth order partial differential operator

$$
\begin{equation*}
E^{4} \equiv\left(E^{2}\right)^{2}, \quad E^{2}=\left[\frac{\partial^{2}}{\partial r^{2}}+\frac{\sin \theta}{r^{2}} \frac{\partial}{\partial \theta}\left(\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\right)\right] \tag{A4}
\end{equation*}
$$

In order to account for small viscosity perturbations also the stream function is expressed as $\psi=\psi_{0}+\epsilon \psi_{1}+\ldots$. We take the curl of Eqs. (6a) and (7b). Inserting the stream function leads to scalar equations for the leading and the first order momentum equations

$$
\begin{array}{ll}
O\left(\epsilon^{0}\right): & E^{4} \psi_{0}=0 \\
O\left(\epsilon^{1}\right): & E^{4} \psi_{1}=h_{1}(r, \theta) \tag{A6}
\end{array}
$$

where $h_{1}(r, \theta)=-r \sin \theta\left(\boldsymbol{\nabla} \eta_{1} \times \boldsymbol{\nabla} p_{0}+\boldsymbol{\nabla} \times\left(\boldsymbol{\nabla} \eta_{1} \cdot\left[\boldsymbol{\nabla} \boldsymbol{v}_{0}+\left(\boldsymbol{\nabla} \boldsymbol{v}_{0}\right)^{T}\right]\right)_{\boldsymbol{e}_{\phi}}\right.$ depends on the leading order solution.

Appendix B: Appendix: First order solution for the velocity

First, we express the boundary conditions ($(7 \mathrm{c})$ and $(7 \mathrm{~d})$) in terms of the stream function ψ_{1}. The no-slip boundary conditions require that the first order velocity has to vanish at the surface of a sphere:

$$
\begin{array}{cll}
v_{r 1} & =\frac{-1}{r^{2} \sin \theta} \frac{\partial \psi_{1}}{\partial \theta}=0 \text { at } & |\boldsymbol{r}|=1 \\
v_{\theta 1} & =\frac{1}{r \sin \theta} \frac{\partial \psi_{1}}{\partial r}=0 \text { at } & |\boldsymbol{r}|=1 \tag{B1b}
\end{array}
$$

The quiescent fluid in the far-field requires:

$$
\begin{equation*}
\frac{\partial_{\theta} \psi_{1}}{r^{2}} \rightarrow 0, \text { and } \frac{\partial_{r} \psi_{1}}{r} \rightarrow 0 \text { for }|\boldsymbol{r}| \rightarrow \infty \tag{B1c}
\end{equation*}
$$

We look for a solution in terms of the Gegenbauer functions $\left\{\mathscr{I}_{n}\right\}_{n}$ (see C), which are eigenfunctions of the angular part of the E^{2} operator, and hence also of the E^{4} operator, with the eigenvalues $\{-n(n-1)\}_{n}$ and provide a complete orthogonal system. Assuming separation of variables we make the ansatz

$$
\begin{equation*}
\psi_{1}(r, \theta)=\sum_{n \geq 2}^{\infty} f_{n}(r) \mathscr{I}_{n}(\zeta), \quad \zeta=\cos \theta \tag{B2}
\end{equation*}
$$

The corresponding first order velocity field is then obtained from Eq. (A2) and is expressed in terms of Legendre's polynomials P_{n} and Gegenbauer functions \mathscr{I}_{n}

$$
\begin{gather*}
v_{r 1}=\frac{1}{r^{2}} \sum_{n \geq 2} f_{n}(r) P_{n}(\zeta) \tag{B3a}\\
v_{\theta 1}=\frac{1}{r} \sum_{n \geq 2} f_{n}^{\prime}(r) \frac{\mathscr{I}_{n}(\zeta)}{\sin \theta} \tag{B3b}
\end{gather*}
$$

The restriction $n \geq 2$ refers to the fact that the velocity field has singularities for the modes $n \in\{0,1\}$ at $\theta \in[0, \pi]$ which lead to infinite tangential velocities. Further, we expand the inhomogeneity $h_{1}(r, \theta)$ in Eq. (A6) in Gegenbauer functions (see Eq. (C5))

$$
\begin{equation*}
h_{1}(r, \theta)=\sum_{n \geq 2} R_{n}(r) \mathscr{I}_{n}(\zeta) . \tag{B4}
\end{equation*}
$$

The coefficients are calculated using Eq. (C7), from which it follows that the first two modes $R_{0}(r), R_{1}(r)=0$ always vanish. Inserting the ansatz (B3) and the expansion (B4) into Eq. (A6) we obtain

$$
\sum_{n \geq 2} \mathscr{I}_{n}(\zeta) E_{n}^{4}(r) f_{n}(r)=\sum_{l \geq 2} R_{l}(r) \mathscr{I}_{l}(\zeta),
$$

where the differential operator $E_{n}^{4}(r)$ is given by

$$
\begin{equation*}
E_{n}^{4}(r) \equiv \frac{\partial^{4}}{\partial r^{4}}-\left(\frac{2}{r^{2}} \frac{\partial^{2}}{\partial r^{2}}-\frac{4}{r^{3}} \frac{\partial}{\partial r}+\frac{6}{r^{4}}-\frac{n(n-1)}{r^{4}}\right) n(n-1) . \tag{B5}
\end{equation*}
$$

In order to decouple Gegenbauer modes we apply the orthogonality of the Gegenbauer functions under the scalar product given by Eq. (C2) to obtain

$$
\begin{equation*}
\forall_{n \geq 2}: \quad E_{n}^{4}(r) f_{n}(r)=R_{n}(r) \tag{B6}
\end{equation*}
$$

For given functions $R_{n}(r)$, which depend on the viscosity variation η_{1}, each coefficient $f_{n}(r)$ of the ansatz (B2) can be determined by an ODE with the differential operator $E_{n}^{4}(r)$. A solution for an arbitrary inhomogeneity $h_{1}(r, \theta)$ can be provided by the Green function integration. This requires the knowledge of the Green function for each differential operator $E_{n}^{4}(r)$.

Appendix C: Appendix: Gegenbauer functions

The Gegenbauer functions of degree $-1 / 2$ can be represented by Legendre Polynomials P_{n}

$$
\begin{equation*}
\mathscr{I}_{n}(\zeta)=\frac{P_{n-2}(\zeta)-P_{n}(\zeta)}{2 n-1} \tag{C1}
\end{equation*}
$$

They are defined on the interval $\zeta \in[-1,1]$ and for our pupose we choose $\zeta=\cos \theta$ with $\theta \in[0, \pi]$. The Gegenbauer functions are a complete orthogonal system with the relation

$$
\begin{align*}
\left\langle\mathscr{I}_{m}(\zeta) \mid \mathscr{I}_{n}(\zeta)\right\rangle_{\zeta} & =\int_{-1}^{1} \frac{\mathscr{I}_{n}(\zeta) \mathscr{I}_{m}(\zeta)}{1-\zeta^{2}} \mathrm{~d} \zeta \\
& =\left\{\begin{array}{ll}
0, & m \neq n \\
\frac{2}{n(n-1)(2 n-1)}, & m=n
\end{array}, \quad n \geq 2\right. \tag{C2}
\end{align*}
$$

which is not valid for $n \in\{0,1\}$. Further they satisfy the relation

$$
\int_{-1}^{1} \mathscr{I}_{n}(\zeta) \mathrm{d} \zeta= \begin{cases}2, & n=0 \tag{C3}\\ \frac{2}{3}, & n=2 \\ 0, n \neq\{0,2\} & \end{cases}
$$

The first derivative of Gegenbauer functions is

$$
\begin{equation*}
\frac{\mathrm{d} \mathscr{I}_{n}(\zeta)}{\mathrm{d} \zeta}=-P_{n-1}(\zeta) \tag{C4}
\end{equation*}
$$

An axisymmetric function $f(\theta)$ which first through $n^{t h}$ derivatives are continuous $f \in C^{n}([0, \pi])$ can be expressed in terms of Gegenbauer functions and also its $1-n^{\text {th }}$ derivatives

$$
\begin{align*}
f(\theta) & =\sum_{l=0}^{\infty} \beta_{l} \mathscr{I}(\zeta) \tag{C5}\\
\partial_{\theta}^{k} f(\theta) & =\sum_{l=0}^{\infty} \beta_{l}^{k} \mathscr{I}(\zeta), \quad 1 \leq k \leq n \tag{C6}
\end{align*}
$$

The coefficients β_{l} are defined as

$$
\begin{align*}
\beta_{l} & =\frac{1}{2} l(l-1)(2 l-1)\left\langle f(\zeta) \mid \mathscr{\mathscr { I }}_{l}(\zeta)\right\rangle_{\zeta} \\
& =\frac{1}{2} l(l-1)(2 l-1) \int_{-1}^{1} f(\zeta) \frac{\mathscr{I}_{l}(\zeta)}{1-\zeta^{2}} \mathrm{~d} \zeta \tag{C7}
\end{align*}
$$

The coefficients $\beta_{0}, \beta_{1}=0$ are zero by definition.

