Supporting information

N^4 -cytosine DNA methylation is involved in the maintenance of genomic stability in *Deinococcus radiodurans*

Shengjie Li¹, Jianling Cai¹, Huizhi Lu¹, Shuyu Mao¹, Shang Dai¹, Jing Hu¹, Liangyan Wang¹, Xiaoting Hua², Hong Xu¹, Bing Tian¹, Ye Zhao¹ and Yuejin Hua^{1*}

¹ The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang University, Hangzhou, China
² Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China

*Correspondence: Prof. Yuejin Hua yjhua@zju.edu.cn Supplementary Table 1. Strains and plasmids used in this experiment.

Supplementary Table 2. Primers or oligonucleotides used in this study.

Supplementary Table 3. The loci, protein accession numbers and recognition sequences of the annotated R-M enzymes in *D. radiodurans* R1.

Supplementary Table 4. Analysis information of MALDI-TOF/TOF MS.

Supplementary Figure 1. Restriction-modification systems in D. radiodurans R1.

Supplementary Figure 2. Example MS Spectra, Related to Figure 2.

Supplementary Figure 3. Multiple sequence alignments of M.DraR1.

Supplementary Figure 4. Deletion of *M.DraR1* gene in *D. radiodurans* R1 strain.

Supplementary Figure 5. PCR analysis to confirm the other three MTases mutants.

Supplementary Figure 6. Purification and identification of M.DraR1 enzyme.

Supplementary Figure 7. M.DraR1 could not methylate CpG sites randomly *in vitro*.

Supplementary Figure 8. The biological relationship of the downregulated DEGs.

1		
Strain and plasmid	Relevant feature	Reference or source
Strains		
D.radiodurans		
DraR1 wt	D. radiodurans R1 wild-type strain	ATCC13939
$\Delta M.DraR1$	R1 but M.DraR1::Str	This study
$\Delta M.DraR1/pk-M.DraR1$	$\Delta M.DraR1$ compensated with pRAD-M.DraR1	This study
$\Delta DraR1ORF2330P$	R1 but ORF2230P::Str	This study
$\Delta DraR1ORF14075P$	R1 but ORF14075P::kana	This study
$\Delta DraR1ORF15360P$	R1 but ORF15360P::kana	This study
E. coli		
ER2796	fhuA2 Δ (lacZ)r1 glnV44 trp-31 dcm-6 his-1 zed- 501::Tn10 argG6 rpsL104 dam-16::Kan xyl-7 mtl- 2 metR1 mcr-62 Δ (mcrB-hsd-mrr)114	Prof. Richard J. Roberts, NEB.
ER2566	F- λ - fhuA2 [lon] ompT lacZ::T7 gene 1 gal sulA11 Δ (mcrC-mrr)114::IS10 R(mcr- 73::miniTn10-TetS)2 R(zgb-210::Tn10)(TetS) endA1 [dcm]	ZonHon Biopharma, Jiangshu, China.
DH(5α)	supE44, Δ lacU169 (ϕ 80lacZ Δ M15), hsdR17, recA1, endA1, gyrA96, thi-1, relA1	TransGen Biotech, Beijing, China.
Plasmids		
pRRS	Genbank accession number: JN569339	Prof. Richard J. Roberts, NEB.
pRRS-M.DraR1	pRRS ligated with full length M.DraR1 gene	This study
pRADK	E. coli–D. radiodurans shuttle vector	Laboratory stock
pRADKm	Modified pRADK vector contains one 'CCGCGG' site	This study
M. pRADKm	Methylated pRADKm vector with M.DraR1 enzyme	This study
pRAD-M.DraR1	pRADK but <i>kana</i> ^r was replaced and ligated with <i>M.DraR1</i>	This study
pET28a-HMT	pET28 plasmid modified with a Maltose Binding Protein and a TEV protease site	Austin, B.P., et al.
HMT-M.DraR1	pET28-HMT but ligated with <i>M.DraR1</i>	This study

Supplementary Table 1. Strains and plasmids used in this experiment.

.

Primers for PCR amplification	Sequence (5'→3')
M DraP1 P1	CACCCCCGTCCAGACTCAGC
$M DraR 1_P 2$	CGCGGATCCTGAGCTGGACTCCCGAAGTGC
$M DraR 1_P3$	
$M DraR 1_P A$	GTGCCCATCTGGAGTCGCTACC
$M DraR 1_P5$	GTGAACTGGATTGCGGGATT
M DraR 1_P6	TTCCGCAGGTAGTGATAGTTGTTC
M DraR1-F	TTAATTTCATATGACGCAACCTCTTCTCTTTGACC
M DraR1-R	TATGGATCCTTACCTGGTCAGTTCAACCACGG
nRAD-F	
nRAD-R	TTGGCGTTACAAGGATGATCCA
2230P-P1	GTCGGGTTGTTCGGGTAAT
2230P_P2	TTGGATCCGAACCTCTTCAGAGTACGGCTTA
2230P-P3	
2230P-P4	CGAAATTCTGCGGGTGG
2230P-P5	AAGAACTGCCTGAGCGGTACA
2230P-P6	CAATGGACAGAACTTTGGATGACT
14075P-P1	ATCAACGGCGGACAAAACGG
14075P-P2	CGCGGATCCATCAGCTCGCAGGCTAGCGC
14075P-P3	CCCAAGCTTAGCTTGAGATTCGTACTCGCCTTAC
14075P-P4	TGGCGGTTAGGCTTCCTTCTG
14075P-P5	GGCACAAAGGACAAAGGGTT
14075P-P6	TCGGTCCTTGAATGTCTCCCT
15360P-P1	AGGACAACCGCATTGACACCC
15360P-P2	TTGGATCCTCAAGACAGGGCTCCAAGTTTGG
15360P-P3	ATT <u>AAGCTT</u> TTGACTCGTGACCAGCTGGAAGA
15360P-P4	AAGGCGGGAAGGGTTGAAGA
15360P-P5	ACGAGATTCCCGAAAAGACCG
15360P-P6	CGTCGGGAAACTCGATGTGC
M.DraR1-pRRS-F	TTT <u>cctgcagg</u> TTAAGGTTAATCATATGACGCAACCTCTTCTCTTTGA
M.DraR1-pRRS-R	TTTggatccCCGCGGTTACCTGGTCAGTTCAACCACG
pRRS-F	ACCCCAGGCTTTACACTTTATGCT
pRRS-R	GCACAGATGCGTAAGGAGAAAAT
pRRS-F-R	AGCATAAAGTGTAAAGCCTGGGGT
λDNA-F	TTGTGGGGTGAATATGGCAGTA
λDNA-R	CAGGCTTCCAGCAACGAGG
gDNA-F	TTTGCAGGAGCCGAAATG
gDNA-R	ACTGGCCGATGTGGTCTTGG
pRADKm-F	CCATTCTTGCAG <u>CCGCGG</u> TCAGGGTCTTGACGT
pRADKm-R	ACGTCAAGACCCTGA <u>CCGCGG</u> CTGCAAGAATGG
pRADKm-seq	AATGGCTGGCCTGTTGAACAAGTCT
Oligonucleotides for EMSA	

Supplementary Table 2. Primers or oligonucleotides used in this study.

S1- F	CAGGCCGCGGCT
S8- F	AGGCCGCGGCTA
S1/8-R	TAGCCGCGGCCT
S2-F	CAGG <u>T</u> CGCGGCT
S2-R	TAGCCGCG <u>A</u> CCT
S3-F	CAGGC <u>T</u> GCGGCT
S3-R	TAGCCGC <u>A</u> GCCT
S4-F	CAGGCC <u>T</u> CGGCT
S4-R	TAGCCG <u>A</u> GGCCT
S5-F	CAGGCCG <u>T</u> GGCT
S5-R	TAGCC <u>A</u> CGGCCT
S6-F	CAGGCCGC <u>T</u> GCT
S6-R	TAGC <u>A</u> GCGGCCT
S7-F	CAGGCCGCG <u>T</u> CT
S7-R	TAG <u>A</u> CGCGGCCT
Primers for RT-qPCR	
C12-F	CGGTCTCGCCAACAAGGAAA
C12-R	TCTTTGGTCGCAGCCGTCA
1262-F	CCCAAAGTGGACTCCCCCG
1262-R	GGTTAGGCCGTTGGTCTGCA
2340-F	CGCCAACACCGTCAAGATCAA
2340-R	TCGTCGCCGTAGGAGTAGAAGC
0099-F	GTGAACGCAATCTGCCCTGGTA
0099-R	GTTCCATGCGGAGGGCTTTG
0423-F	GGCATCGGGCGTTACCTCTA
0423-R	CGCAACTGCTCCATCGCC
B0100-F	CGGATTTATCGGCAAGGAGGTC
B0100-R	CGTTCTCGCCGCAAAATCG
1877-F	CCGCGAGTTCGAGTTAAAGGTG
1877-R	GGTAGCGCTTGACCTGCACC
1343-F	GGCTGGTTTTCCGCATCCTC
1343-R	GTTGACCGTCAGGCTGCTTTC
0689-F	CCGTCAACGCCAAAGAGGAG
0689-R	CGGGTGCCGAAGAAATACTGTT
0690-F	ACGGCGTGTCGCAGCATAA
0690-R	GGGGCCAATGACTTCGCG
2244-F	CGAGCCTATTCCCGACACTGA
2244-R	ACGAGAAGGCGTTGCGCTC
A0188-F	GACCCGCAACAACCTGGATAA
A0188-R	GTCTTCGTCGTCCTCGGGG
1939-F	ATCCCTACGACTCCTTTGTCAACG
1939-R	ACGACCTGCTTGCCGTTTTC
A0157-F	CCCACGCTCGCCAACATCTA
A0157-R	TGCTCTTCCACTCGCCGC

Name	Enzymes/ORF	Type/Annotation ^a	Locus tag	Protein ID	Recognition (cleavage) ^b	Reference locus tag
Mmel	DraR1ORF2230P	Type II restriction enzyme and methyltransferase	A2G07_02230	ANC70677.1	CAAGN <u>A</u> C, m6A	DR_2267
Mrr	DraR1MrrP	Type II restriction enzyme	A2G07_10975	ANC72247.1	Unkown	DR_0508
Mrr	DraR1Mrr2P	Type IV Methyl-directed restriction enzyme	A2G07_10550	ANC72172.1	Unkown	DR_0587
/ DraR10	$D_{r_2} P 1 \cap P E 1 / 0.75 P$	Putative Type IIG restriction enzyme/N6-	A2G07_14075	ANC72977.1	Unkown m6A	DR_A0119
	Diakioki 140751	adenine DNA methyltransferase	A2G07_14080	ANC72978.1	Ulikowii, ilioA	DR_A0119.1
/ I	DraR1ORF15360P	Type IIG restriction enzyme and	A2G07_15365	ANC73228.1		DR_B0137
		methyltransferase	A2G07_15360	ANC73227.1	Unkown, m6A	DR_B0138
McrB	DraR1McrBP	Type IV Methyl-directed restriction	A2G07_15330	ANC73223.1	Unkown	DR_B0143
McrC	DraR1McrCP	enzyme	A2G07_15325	ANC73222.1	Unkown	DR_B0144
M. DraR1 ^c	M.DraR1ORF16000P	Type II methyltransferase, subtype: alpha	A2G07_16000	ANC73351.1	C <u>C</u> GCGG, m4C	DR_C0020

Supplementary Table 3. The loci, protein accession numbers and recognition sequences of the annotated R-M enzymes in *D. radiodurans* R1.

^a The annotation and types of RM enzymes are presented in REBASE, a restriction enzyme database.

^b The methylated nucleotide in the motif is shown as bold and underlined letter.

^c The recognition sequence of M.DraR1 is confirmed in our study

Protein Name Species				Accession No.	Protein MW	Protein PI	Pep. Count	Protein Score	Protein Score C. I. %	Total Ion Score	Total Ion C. I. %		
hypothetical protein A2G07_16000		Deinoco	Deinococcus radiodurans		ANC73351.1	48526.6	6.11	22	762	100	629	100	
Peptide Info	ormation												
Calc.	Obsrv.	± da	± ppm	Start	End	Sequence		Ion	C. I. %	Modification	Resul	t Type	
Mass	Mass			Seq.	Seq.				Score				
852.4363	852.4354	-0.0009	-1	296	301	YW	QTVR					Mascot	
871.4196	871.4301	0.0105	12	139	145	TPF	YSEK				Mascot		
891.4683	891.4635	-0.0048	-5	131	138	VPQ	GFTSR					Mascot	
1040.6211	1040.6199	-0.0012	-1	356	365	TQAVLRPGAK					Mascot		
1059.6157	1059.6178	0.0021	2	408	418	IGSSIVGTGLR					Mascot		
1114.5415	1114.5535	0.012	11	287	295	YLELDNYGK					Mascot		
1192.6572	1192.6638	0.0066	6	425	434	LYEAVVELTR					Mascot		
1192.6572	1192.6638	0.0066	6	425	434	LYEAVVELTR		77	100		Mascot		
1636.9091	1636.9043	-0.0048	-3	213	227	LLEMHADLLGVQGIK					Mascot		
1642.8007	1642.8088	0.0081	5	228	242	LGGQTAQ	VYQGSFM	R				Mascot	
1642.8007	1642.8088	0.0081	5	228	242	LGGQTAQVYQGSFMR		R	95	100		Mascot	
1658.7955	1658.807	0.0115	7	228	242	LGGQTAQ	VYQGSFM	R		Oxidat	tion (M)[14]	Mascot	
1856.9171	1856.9246	0.0075	4	193	210	AAAGKPDIE	DADVAQV	MR				Mascot	
1880.031	1879.9791	-0.0519	-28	211	227	DKLLEMHA	DLLGVQG	IK				Mascot	
1903.9813	1903.9896	0.0083	4	268	283	NTRPHLYV	VLGYATSP	K				Mascot	
1903.9813	1903.9896	0.0083	4	268	283	NTRPHLYV	WLGYATSP	K	49	100		Mascot	
2041.0865	2041.0918	0.0053	3	79	96	GHSVVSYD	INPFPLLV	QR				Mascot	
2041.0865	2041.0918	0.0053	3	79	96	GHSVVSYD	INPFPLLV	QR	149	100		Mascot	

Supplementary Table 4. Analysis information of MALDI-TOF/TOF MS.

2070.0291	2070.0288	-0.0003	0	150	166	VLHVWDFINEVADEDLR			Mascot
2432.0579	2432.0686	0.0107	4	331	351	GVYGGQGWANYATEYFNDTYR			Mascot
2880.4712	2880.4604	-0.0108	-4	1	25	MTQPLLFDLPTPRPTYRDTAFASNK			Mascot
2889.3401	2889.3694	0.0293	10	167	192	DLFQVAFGATMVSYSNYSYEPSLGSR			Mascot
2910.3979	2910.415	0.0171	6	243	267	SELPDSSVDLMVTSPPYLNNYHYLR	84	100	Mascot
2926.3928	2926.4099	0.0171	6	243	267	SELPDSSVDLMVTSPPYLNNYHYLR		Oxidation (M)[11]	Mascot
2928.4561	2928.4287	-0.0274	-9	101	128	AIQDVTPAEFAQQIEAFTAHMATGGVPK			Mascot
2948.3638	2948.416	0.0522	18	331	355	GVYGGQGWANYATEYFNDTYRFLQK			Mascot
2993.5005	2993.4846	-0.0159	-5	305	330	YQTSLIFDSPWLQDLVNQLAGVQSDR			Mascot
3141.5688	3141.5815	0.0127	4	377	404	GTNLPIDEVFTHIAQHLGFSGHDIHMVR			Mascot
3157.5637	3157.5732	0.0095	3	377	404	GTNLPIDEVFTHIAQHLGFSGHDIHMVR		Oxidation (M)[26]	Mascot

Three fused polypeptides containing both DNA methyltransferase and endonuclease activity are located in the chromosome I, chromosome II and the large plasmid. Four restriction endonucleases, two Mrr and two McrBC types, are at the chromosome I and large plasmid, respectively. A putative methylase is presented in the small plasmid.

Supplementary Figure 2. Example MS Spectra, Related to Figure 2.

- (A) Nucleoside standards representing all different bases including 4mC, 6mA and 5mC.
- (B) Representative MS spectra of *D. radiodurans* R1 genomic DNA. These spectra demonstrate where levels of 6mA and 5mC (red arrow showed) were extremely low compared to 4mC. There are slight variations from run to run due to column and flow rate differences but the peak order is consistent.

Supplementary Figure S3. Multiple sequence alignments of M.DraR1.

Sequences are from the top 20 recorded hits using BLASTP tool in REBASE. The query sequence is M.DraR116000P from *D. radiodurans* R1. The conserved N-terminal SAM-binding motif ('FxGxG') and C-terminal catalytic motif ('SPPY') are indicated by red solid line boxes. Identical residues are shown as white letters with black background, and similar residues are shown as white letters with gray background.

Supplementary Figure 4. Deletion of *M.DraR1* gene in *D. radiodurans* R1 strain.

(A) Scheme of gene mutation by homologous recombination which replaced the targeted ORFs with antibiotic resistant fragment. P1, P2, P3, P4, P5 and P6 refer to the primer pairs (Supporting information, supplementary table 2).

(B) PCR analysis to confirm the mutation of *M.DraR1* strain. The amplicon from the mutant (P1/P4 primers, 2648 bp, lane 3) is shorter than that of the wild type (3062 bp, lane 1), indicating that *M.DraR1* was replaced with the streptomycin-resistance fragment. Further, an interior DNA fragment of this gene was detected by amplification using primers P5/P6. No products corresponding to the size of the interior fragment from wild type (706 bp, lane 2) was observed in the mutant (lan 4), suggesting that the wild type alleles had completely replaced by streptomycin-resistance fragment in the mutant.

Supplementary Figure 5. PCR analysis to confirm the other three MTases mutants. (A) PCR analysis to confirm the mutation of ORF2230P. The amplicon from the mutant (P1/P4 primers, 1914 bp) is shorter than the amplicon from the wild type (P1/P4, 3555 bp). Further, no products corresponding to the size of the interior fragment from wild type (2038 bp) was observed in the mutant, suggesting that the wild type alleles had completely replaced by streptomycin-resistance fragment in the mutant.

(B) PCR analysis to confirm the mutation of ORF14075P. The corresponding amplicon from the mutant (P1/P4 primers, 3296 bp) is shorter than the amplicon from the wild type (P1/P4, 4906 bp). Further, no products corresponding to the size of the fragment from wild type (1358 bp) was observed in the mutant, suggesting that the wild type alleles had completely replaced by kanamycin resistance fragment in the mutant.

(C) PCR analysis to confirm the mutation of ORF15360P. The corresponding amplicon from the mutant is 3270 bp (P1/P4 primers), shorter than that of the wild type (5530 bp). Further, no products corresponding to the size of the interior fragment from wild type (522 bp) was observed in the mutant, suggesting that the wild type alleles had completely replaced by kanamycin resistance fragment in the mutant. Primers were listed in supplementary table 2.

MTQPLLFDLPTPRPTYRDTAFASNKTLAMHRWVNWIAGFSSEFVQHALELHLPDPNPEQVVLDP<u>FGGVG</u>TTPITAFLR GHSVVSYDINPFPLLVQRAKLRAIQDVTPAEFAQQIEAFTAHMATGGVPKSKVPQGFTSRTPFYSEKVLVKVLHVWDFI NEVADEDLRDLFQVAFGATMVSYSNYSYEPSLGSRAAAGKPDIEDADVAQVMRDKLLEMHADLLGVQGIKLGGQTAQ VYQGSFMRSELPDSSVDLMVT<u>SPPY</u>LNNYHYLRNTRPHLYWLGYATSPKDLRYLELDNYGKYWQTVRDAKYQTSLIFD SPWLQDLVNQLAGVQSDRGVYGGQGWANYATEYFNDTYRFLQKTQAVLRPGAKALIVVGNSIVKGTNLPIDEVFTHIA QHLGFSGHDIHMVRDSRIGSSIVGTGLRSEGKGRLYEAVVELTR

Supplementary Figure 6. Purification and identification of M.DraR1 enzyme.

- (A) Representative diagrams of protein purification by HisTrap. The fused His-MBP-M.DraR1 protein was eluted with 250 mM imidazole.
- (B) Representative diagrams of MBPTrap. After TEV protease cleaved, the protein was loaded onto an MBPTrap column to remove His-MBP and uncleaved proteins (Peak 2). The flow-through fractions containing M.DraR1 and few His-MBP protein were collected.
- (C) Representative diagrams of HiTrap Heparin. The collected proteins from MBPTrap column were desalted and loaded in Heparin column. Fractions containing M.DraR1 protein were eluted using a linear NaCl gradient (Peak 1).
- (D) Western blot analysis was used to distinguish M.DraR1 (Peak 1) from His-MBP (Peak 1) using anti-his tag antibody.
- (E) Peptide mass fingerprint (PMF) of M.DraR1 protein. The identified peptides are shown in bold red text and detailed information was shown in supplementary table
 4. FxGxG and SPPY conserved motifs were shown in underline.
- (F) Gel-filtration analysis revealed that M.DraR1 exist as a monomer in solution. FPLC system coupled to a Superdex 200 10/300 GL column. Elution profles at 280 nm are different concentration of M.DraR1 protein. Purple, 0.1 mg/mL; Orange, 0.2 mg/mL; Green, 0.5 mg/mL.
- (G) Protein size standard curve created with ribonuclease A (13.7 kDa), carbonic anhydrase (29 kDa), ovalbumin (44 kDa), conalbumin (75 kDa), aldolase (158 kDa), ferritin (440 kDa), and thyroglobulin (669 kDa).

All peaks were reconstructed using GraphPad Prism software.

Supplementary Figure 7. M.DraR1 could not methylate CpG sites randomly *in virto*.

(A) The methylation of DNA fragment with M.DraR1 could not block the activities of *Hae*III (lane 4), *Hha*I (lane 5) and *Hpa*II (lane 6) contrasting to *Sac*II (lane 3). Lane 1 stands for the amplified PCR fragment containing three 'CCGCGG' sites form gDNA of DraR1. The unmethylated control one was digested to four bands by *Sac*II (lane 2). (B) The unmethylated (c) and methylated (m) λ DNA showed the same digestive profiles by *Hae*III, *Hha*I and *Hpa*II. M, 250 bp DNA ladder (TSJ105-100) from Beijing TsingKe Biotech Co., Ltd. All experiments were performed in three independent biological replicates.

Supplementary Figure 8. The biological relationship of the downregulated DEGs. (A) Functional categories of the downregulated DEGs in the GO database. Bars with asterisks represent significantly enriched terms (p < 0.05).

(B) Functional categories of the downregulated DEGs in KEGG pathways.