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S1. Synthetic examples 

Simulation datasets were generated as in [1]. Firstly, two real biological datasets 

of different platforms, e.g., gene expression and methylation profiles, were prepared 

including GSE49278 and GSE49277 [2]. 90 samples were randomly selected and 2 

types of data were constructed, referred to as 𝑋   and 𝑋  , where rows present 

biological measurements and columns for samples. Then, singular value decomposition 

(SVD: 𝑋 = 𝑈𝐷𝑉) was applied in data matrices 𝑋 , and  𝑋 , respectively. 

1 1 1 1X U DV  and 2 2 2 2X U D V  

In order to preserve the true biological characteristics in data, we kept the matrices 

𝑈s and modified the matrices 𝑉s with 3 pre-defined clusters, i.e., samples 1-30 for 

cluster 1, 31-60 for cluster 2, and 61-90 for cluster 3. Cluster 2 and cluster 3 can’t be 

distinguished in data type 1, while cluster 1 and cluster 2 appear more close from data 

type 2. Only the combination of two data types can recover the full cluster structures. 

In order to better mimic different types of heterogeneity (i.e., embedded 

subspaces), we generated two types of simulation data sets, wherein the weak 



heterogeneous example denoted as simData1 with samples in a single subspace and the 

strong one as simData2 underlying three manifold subspaces. Such difference is 

implemented by modifying the matrices 𝑉s when generating two data sets.  

For simData1, the modification of 𝑉s is as follows: 

k
ij ijv mean value                            (1) 

where 𝑣𝑎𝑙𝑢𝑒 ~𝑁(0,1)  represents random biases for expression of element i in 

sample j; 𝑚𝑒𝑎𝑛 ∈ {2,6} represents the average expression level in cluster k (k=1, 2) 

for each data type. For example, samples 1-30 belong to same cluster and 31-90 are 

assigned into the other cluster in data type 1; and in data type 2, samples 1-60 are 

grouped together and 61-90 as the other cluster. Base on equation (1), the pre-designed 

matrices 𝑉   and 𝑉   represent corresponding sample structures in 2 types of 

data for simData1. 

For simData2, we need to construct three different subspaces in data of strong 

heterogeneity. For convenience, we selected three rows of matrices Vs, which have the 

largest singular values, as the defined subspaces, and the remaining values are all equal 

to 0. Then, the pattern matrices 𝑉  and 𝑉  could be generated as follows: 

1

10*rand(1,30)+5,10*rand(1,30)+5, 10*rand(1,30)+5

0*rand(1,30),10*rand(1,30)+5, 10*rand(1,30)+5
=

10*rand(1,30)+5,0*rand(1,30), 0*rand(1,30)simV

 
 
 
 
 
 0

 

2

10*rand(1,30)+5,10*rand(1,30)+5, 10*rand(1,30)+5

0*rand(1,30),0*rand(1,30), 10*rand(1,30)+5
=

10*rand(1,30)+5,10*rand(1,30)+5, 0*rand(1,30)simV

 
 
 
 
 
 0

 

where the function rand(n,m) return a n-by-m matrix of pseudorandom uniform values. 

Finally, the simulated data sets 𝑋  and 𝑋  for simData1 and simiData2 

were thus created by: 

1 1 1 1layer simX U D V  and 2 2 2 2layer simX U D V  

 

 



Table S1. Description of CCLE data used in this study. 

 
  

Tumor type Sample size

breast carcinoma 33

central nervous system (glioma grade IV) 35

acute myeloid leukaemia 34

multiple myeloma 29

colorectal adenocarcinoma 43

lung adenocarcinoma 47

lung small cell carcinoma 53

lung squamous cell carcinoma 27

pancreas ductal carcinoma 26

melanoma 60

upper aerodigestive tract squamous cell carcinoma 28



 
Figure S1. A simulation study on simData1. (A) 2D Illustration of sample patterns in 
different feature spaces. Data points, i.e., samples, are colored and shaped by their true 
cluster labels. Clean cluster boundaries only can be seen in a integrative affine space. 
Points in two clusters may be mislabeling in a single coordinated space, i.e., Cluster 2 
and 3 for data type 1, Cluster 1 and cluster 2 for type 2. (B) The clustering accuracy 
comparison among MSCA, SNF, ANF, iClusterPlus and other multi-view subspace 
clustering algorithms under different noise conditions, measures their effectiveness on 
detecting integrated sample-patterns. 



 

Figure S2. Comparison of several multi-view subspace clustering algorithms (i.e., 
DiMSC, MVLRSSC and LMSC) on simData2.  
  



 

Figure S3. Determination of number of clusters for CCLE data. 
  



 
Figure S4. The proportion of cluster over-expressed gene sets to tissue-specific 
gene sets. A high value indicates strong lineage-dependency. 
  



 

Figure S5. The expression patterns of top 100 cancer related genes. Rows are genes 
and columns are cell line samples sorted by cluster assignment. 
  



 

Figure S6. The CNV patterns of top 100 cancer related genes. Rows are genes and 
columns are cell line samples sorted by cluster assignment. 
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