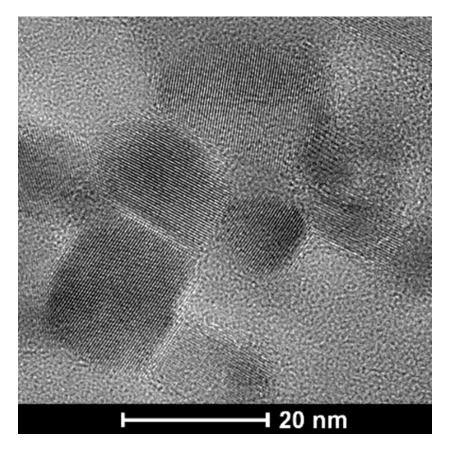


Supplementary Material

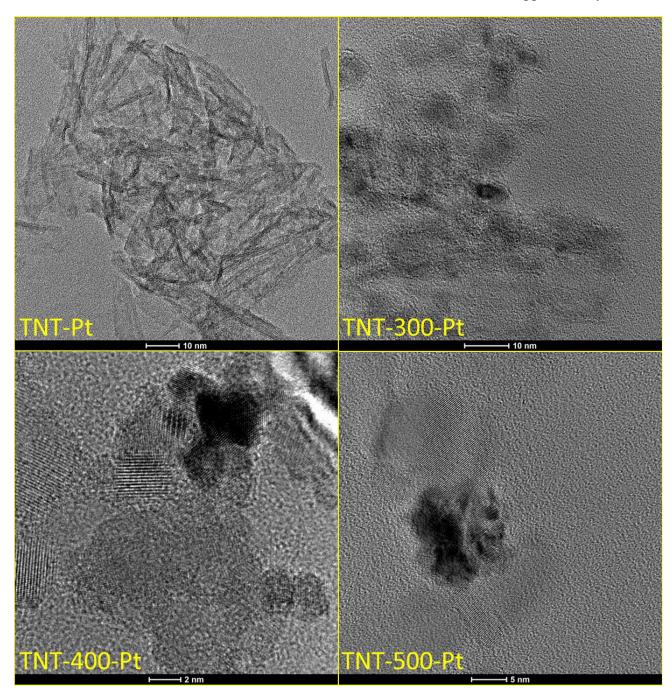
Hydrogen and propane production from butyric acid photoreforming over $Pt\text{-}TiO_2$

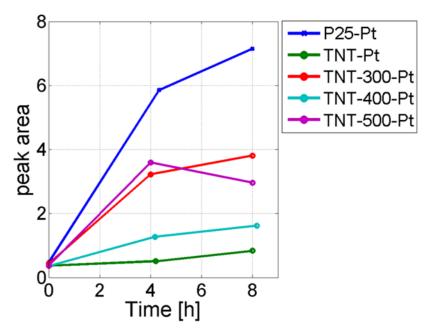
Gabriele Scandura^{1,2}, Jorge Rodríguez¹, Giovanni Palmisano ^{1,2*}

¹Department of Chemical Engineering, Khalifa University, Masdar Institute Campus, PO Box 54224, Abu Dhabi, United Arab Emirates.


²Research and Innovation Center on CO₂ and H₂ (RICH), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates.

* Correspondence:


Giovanni Palmisano giovanni palmisano@ku.ac.ae


Supplementary Figure 1. Picture of the reaction system used for the photocatalytic runs.

Supplementary Figure 2. TEM image at high magnification of TNT-400.

Supplementary Figure 3. TEM images of TNT and TNT calcined at different temperature and decorated with platinum.

Supplementary Figure 4. Peak area from the HPLC chromatogram of a significant unknown reaction by-product.

Material balances details

The concentration of methane ([CH₄]), ethane ([C₂H₆]), propane ([C₃H₈]) and CO₂ in gas phase were obtained through GC analysis and multiplied by the total gas volume in the reactor. Similarly, the concentration of butyric acid ([BA]), given by HPLC, was multiplied by the total liquid volume in the reactor. The amount of CO₂ dissolved in water ([CO₂]_L) was calculated by means of Henry's law, knowing the concentration of CO₂ in the reactor headspace ([CO₂]_G), the room temperature and the pH of the solution (3.61).

The quantities in table 5 (in the manuscript) were computed as follows:

$$C_{BA,R} = ([BA]_0 - [BA]_f) *V_L *4$$

$$TOC_R = (TOC_0 - TOC_f) * V_L / AW_C$$

$$C_{BA,R} = C_{KT} + C_{UT}$$

$$C_{KT} = C_{KL} + C_{KG}$$

$$C_{UT} = C_{UL} + C_{UG}$$

$$C_{KL} = [CO_2]_L$$

$$C_{KG} = ([CH_4] + [C_2H_6]*2 + [C_3H_8]*3 + [CO_2]_G)*V_G$$

$$C_{UL} = TOC_{BA,R} - TOC_R$$

$$C_{UG} = TOC_R - C_{KG} - [CO_2]_L$$

where:

 AW_C = carbon atomic weight

 $V_L = total \ liquid \ volume \ in \ the \ reactor$

 V_G = total gas volume in the reactor

 $C_{BA,R}$ = carbon as BA reacted (mol C)

 TOC_0 = initial total organic carbon in liquid phase (mg/L)

 TOC_f = final total organic carbon in liquid phase (mg/L)

 $TOC_R = TOC \text{ reacted (mol C)}$

 C_{KT} = total carbon as known product (mol C)

 C_{UT} = total carbon as unknown products (mol C)

 C_{KL} = carbon known products in liquid phase (mol C)

 C_{KG} = carbon as methane+ethane+propane+ CO_2 in gaseous phase (mol C)

 C_{UL} = carbon as unknown products in liquid phase (mol C)

 C_{UG} = carbon as unknown products in gaseous phase (mol C)

CKT, CKL, CKG, CUT, CUL, CUG can also be given as fraction (%) of CBA,R.