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1 DATA

The data is available from 10.3929/ethz-b-0003395833

2 BEDROCK DEM

The Bedrock DEM of Gauligletscher was reconstructed from Ground Penetrating Radar (GPR) profiles4
(Rutishauser et al., 2016). To complete the data where the profile density was to low, we used the ice5
thickness distribution approach of Farinotti et al. (2009), see Fig. S1. The ice thickness distribution was6
obtained by subtracting the bedrock DEM from the surface DEM, representing a consistent state of 2010.7
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Figure S1. Ice thickness distribution of Gauligletscher and Grünbergligletscher in 2010. The thick black
lines are the locations where the bedrock was identified by GPR.
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3 MODEL CALIBRATION

Table S1 shows several assessment results of the model quality with respect to ice flow parameters (rate8
factor A and Weertman friction coefficient c). The first consists of the Root Mean Square Error (RMSE)9
between modelled and observed surface elevation in 2010. The second and third consist of the RMSE10
between modelled and observed surface velocities (TanDEM-X and Sentinel-2). The fourth shows the11
modelled depth of the pieces of the airplane in 1947 obtained after integrating backward-in-time their12
trajectories from the location they were found. The first three panels were used for model calibration, i.e.,13
the ice flow parameters were chosen in order to minimize discrepancy. Furthermore, the spatial distribution14
of the RMSE is shown on Figure S2 for the optimal parameter set (A, c) = (60 MPa−3 a−1, 12500 MPa−315
m a−1) .16

Table S1. The three first panels indicate the Root Mean Square Error (RMSE) between modelled surface elevation and the DEM of 2010 (m), between modelled
surface velocities and those inferred from SAR data of TanDEM-x (m a−1), and from Sentinel-2 in the ablation area (m a−1), respectively, for different
combinations of model parameters A (MPa−3 a−1) and c (MPa−3 m a−1). The bottom panel shows the modelled depth of the pieces of the airplane in 1947
obtained after integrating backward-in-time their trajectories from the location they were found.

Weertman (c) Rate factor (A)

60 80 100 120 150
57’900 26.9 27.5 28.1 28.6 29.2
37’000 21.9 22.6 23.3 23.9 24.6
23’300 17.4 18.1 18.7 19.4 20.3
12’500 13.8 14.2 14.7 15.2 16.0
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Figure S2. Root Mean Square Error (RMSE) between modelled and observed (a) surface elevation in
2010, (b) averaged surface velocity between 2011 and 2016 using TanDEM-X SAR data and (c) averaged
surface velocity between 2015 and 2017 using the Sentinel-2 data. Negative difference means that the
modelled surface/velocity is too low/slow and positive difference means it is too high/fast compared to
observations.
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4 MODELLED MASS BALANCE IN 2011 AND 2013

Figure S3 displays the spatial distribution of the modelled annual mass balance in 2011 and 2013. These two17
distributions were used to run the model in the future for the warm-dry and cold-wet scenarios, respectively.18
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Figure S3. Spatial distribution of the modelled annual mass balance in (a) 2011 and (b) 2013 (unit: m
water equivalent). These two mass balance distributions were used for the warm-dry and cold-wet scenarios
to simulate the evolution of Gauligletscher in the future.
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5 SENSITIVITY OF THE RESULTS

Figure S4 shows the modelled horizontal locations and their confidence areas of the Dakota in 2014, of19
the Dakota in the year of emergence, and of the already-emerged pieces in 1947. Taking into account all20
sources of uncertainty listed in Section 5.3, the confidence areas are 1012, 954, 949 m long and 67, 119, 7421
m wide, respectively (see Supplementary Fig. 4).22

Figure S4. Modelled horizontal position of the Dakota main body in 2014 (red), of the Dakota main body
in the emergence year (green), and of the emerged pieces (blue). The rectangle indicates the confidence
area, which takes into account model errors and data uncertainties.

6 GPR SEARCH INVESTIGATIONS

In April 2018 we used Ground Penetrating Radar (GPR) to conduct measurements at the surface of23
Gauligletscher in order to localize the Dakota aircraft, as GPR techniques had previously detecting24
plane wreckages and buried debris within ice sheets (Annan, 2004; Colgan et al., 2016). To achieve this,25
electromagnetic waves were propagated from the transmitting antenna, and scattered or reflected within a26
glacial setting, from bedrock, englacial water accumulations or via materials with different electrical or27
magnetic proprieties (Plewes and Hubbard, 2001; Conyers, 2002). These reflected radar waves were then28
detected by the receiving antenna. We attached the pulseEKKO GPR system on two sleds (one for the29
transmitting and one for the receiving antenna) and acquired 9 km of radar data parallel and perpendicular30
to the ice flow. The lines were spaced by approximately 40 m intervals, covering a major portion of the31
Dakota aircraft modelled confidence area in 2018 (Fig. S5a). Two different antenna frequencies (50 MHz32
and 25 MHz) were used to increase our ability to identify the Dakota aircraft by changing the resulting33
vertical resolutions. A global navigation satellite system (GNSS) receiver was connected to the GPR34
recorder to link each radargram trace to a 3D spatial coordinate.35

However, in the area and depth range where the Dakota aircraft was estimated to be located by the model,36
the data were characterized by large scattering features, and no distinct reflections are visible (see an37
example on Fig. S5b). Such data features are extreme common in temperate condition on alpine glaciers38
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Figure S5. (a) Overview of 25 MHz and 50 MHz profiles performed in April 2018 on Gauligletscher. The
black dots represent the modelled horizontal location of the Dakota aircraft in 2018, while the rectangle
indicates the coresponding confidence area accounting for various sources of error. (b) GPR profile signal
amplitude (intensity of reflection) displayed as a function of distance along the bold grey line shown on
Panel a (x-axis) and altitude (y-axis).

(Langhammer et al., 2017). Consequently, we cannot clearly distinguish any reflections caused by the39
Dakota aircraft. Possible technical reasons are:40

1. Gauligletscher is a temperate glacier and the use of GPR could generate erratic results in temperate41
ice due to water content in the bulk of the ice which may cause damping and scattering of the42
electromagnetic waves. For this reason, the scattering in the data can likely be traced to surface or43
shallow englacial water (Fig. S5b) (Maijala et al., 1998; Moore et al., 1999; Langhammer et al., 2017).44
By contrast, the airplanes in Greenland detected by GPR (see Introduction) were located in cold ice,45
and thus less affected by wave scattering (Moore et al., 1999).46

2. High amplitude point diffraction – the expected feature caused by an obstacle such as the Dakota47
aircraft – could also originate from englacial voids, sediment inclusions (Irvine-Fynn et al., 2006) or48
drainage channels (Moorman and Michel, 2000).49

Lastly, it cannot be ruled out that the Dakota aircraft could be broken apart into several small pieces, which50
would generate only sparse and small diffractions, and/or that the wreck could be located outside of the51
GPR measurement lines.52
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