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Supplementary Material 

 

1 Figure 1S 

 

 

 

Supplementary Figure 1. Schematic showing the agent interaction flow underlying the ABM 

spatial network structure. Figure adapted from Figure 1. in (Wiltshire et al., 2019; Wiltshire, 

2018). Pigs are transferred to the appropriate agent (another producer agent or the slaughter 

plant) once they reach the designated age as indicated in the bottom section of the figure. Feed 

mill agents deliver feed periodically to all types of producer agents.  

 

 

 

2 Agent-based model parameters 

 

Supplementary Table 1.  Parameters describing the hog production network structure, the 

epidemiological sub-model (except for infection probabilities described in the Supplementary 

Table 3) and the human behavioral components of the ABM. These values were kept fixed for 

the scenario experiments.  

 

Parameter Value 

Network Makeup 
 

Network connections structure Nearest neighbor 

Number of producers 2217 

Number of slaughter plants 24 
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Number of feed mills 50 

Number of veterinarians  44 

Number of producers per veterinarian  50 

Epidemiological Characteristics 
 

Number of producers initially infected 3 

Number of feed mills initially infected 1 

Suckling pig mortality rate 0.98 

Nursery pig mortality rate 0.75 

Grow/finish hog mortality rate 0.25 

Length of producer infection (days)  50 

Length of feed mill contamination (days)  20 

Length of slaughter plant contamination (days)  60 

Percent producers infected with annual environmental infection  0.3 

Visitor frequency (times per week) 1.5 

Farrowing 
 

Frequency of farrowing (days) 30 

Minimum farrowing quantity as a proportion of producer capacity 0.25 

Producer to Producer Pig Transfers 
 

Minimum transfer quantity as a proportion of transferee capacity 0.01 

Feed Delivery 
 

Frequency of feed distribution trips (days) 2 

Percent of producers in feed mill service area visited per trip 1.125 

Human behavior 
 

Biosecurity increase  1.4 

Psychological distancing rate of infected producers 0 

Psychological distancing rate of clean producers 0.008 

Relative shift between curves of probability of biosecurity increase 

across risk attitude groups 
0.09 
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3 The agent-based model’s epidemiological sub-model 

PEDv can be transferred from one ABM agent to another on the network connections used for 

animal and feed movement. Associated with each movement there is a probability to transmit or 

contract infection dependent on the type of movement and the biosecurity of the interacting 

agents. The agent interactions are mediated by a theoretical truck, both in the case of feed 

deliveries, and of pig movements among producers or between a producer and a slaughter plant. 

The probability of infection for each type of interaction is calculated using an independent 

logistic equation multiplied by a seasonal adjustment. We model the logistic functions to reflect 

the fact that agents are less likely to become infected when more biosecurity measures are taken 

to prevent virus incursion. Because PEDv is a seasonal virus with highest infection risk in winter 

months, we add a seasonal adjustment that modulates the infection probability with time. The 

probability of infection is given by the following function (Supplementary Figure 2):  

𝑝𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛 = 𝑎𝑑𝑗𝑠𝑒𝑎𝑠𝑜𝑛 ∙ 𝑝𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐 

Where the logistic probability 𝑝𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐 and the seasonal adjustment 𝑎𝑑𝑗𝑠𝑒𝑎𝑠𝑜𝑛   are defined by:   

- The logistic equation:    

𝑝𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐 = (𝑝𝑚𝑎𝑥 − 𝑝𝑚𝑖𝑛) ∙  
1

1 +  𝑒𝑚∙(𝑏𝑠−𝑏𝑠0)
+  𝑝𝑚𝑖𝑛 

 

- And the sinusoidal function: 

 

𝑎𝑑𝑗𝑠𝑒𝑎𝑠𝑜𝑛 = (1 − 𝑚𝑖𝑛𝑎𝑑𝑗)  ∙
1

2
(1 +  cos (2𝜋 ∙

𝑑 − 𝑑𝑝𝑒𝑎𝑘

366
) ) + 𝑚𝑖𝑛𝑎𝑑𝑗 

 

and the parameters are described in Supplementary Table 2. For parsimony in the model’s 

parameter values, we set pmin=0.05, m=1.3, and bs0 = 4 for all agent interactions. We then 

estimated the logistic’s pmax to fit the probability estimates provided by field experts for different 

types of interactions between hog production premises, feed mills and slaughter plants with a 

medium biosecurity during the high infection months of winter (Supplementary Table 3). The 

seasonality adjustment function 𝑎𝑑𝑗𝑠𝑒𝑎𝑠𝑜𝑛 oscillates between a maximum 𝑚𝑎𝑥𝑎𝑑𝑗 = 1 reached at 

day 𝑑𝑝𝑒𝑎𝑘 = 30 (January 30th) and a minimum 𝑚𝑖𝑛𝑎𝑑𝑗 = 0.3 in the summer.  
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Supplementary Figure 2.  Shape of the PEDv infection probability function used in the ABM. 

The probability of infection increases with decreasing values of biosecurity. The sinusoidal 

variability through time accounts for PEDv seasonality with maxima in winter (January) and 

minima in summer (June).  
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Supplementary Table 2. Parameters of the probability of infection function including both the 

logistic and the sinusoidal forms. 

 

Symbol Infection 

probability 

function’s term 

Definition Description 

bs  Input biosecurity Continuous variable describing an 

agent’s biosecurity over the range [0, 8]. 

𝑝𝑚𝑎𝑥 𝑝𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐 Carrying capacity  𝑝𝑚𝑎𝑥 ≤ 1  
A set maximum value for the probability 

(i.e. what happens at high/infinite 

biosecurity). 

𝑝𝑚𝑖𝑛 𝑝𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐 Minimum value  Probability value at  biosecurity = 0 

m 𝑝𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐 Slope of the curve Parameter is related to the steepness of 

the curve at point x0. Note that m < 0  to 

have a Z-shaped function 

bs0      𝑝𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐 Point of inflection  The point on the Z-shaped curve 

halfway between minf and K (i.e. the 

center of the logistic curve). 

d 𝑎𝑑𝑗𝑠𝑒𝑎𝑠𝑜𝑛 Input day of the 

year  

Current day of the year [1, 365] or [1, 

366] for leap years 

dpeak 𝑎𝑑𝑗𝑠𝑒𝑎𝑠𝑜𝑛 Day with highest 

infection (peak)  

Day of the year at which the adjustment 

is equal to 1.  

minadj 𝑎𝑑𝑗𝑠𝑒𝑎𝑠𝑜𝑛 Scaling parameter  Parameter to keep the seasonal 

adjustment bounded within [minadj,1] 
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Supplementary Table 3.  Logistic probabilities used in the ABM to model the epidemiological 

spread of PEDv associated with movement (column 1). The table breaks down the probabilities 

by movement/interaction type (column 1 and 2). A logistic function with four parameters {pmax, 

pmin, m, bs0} models the probability of PEDv transmission as a function of the biosecurity of the 

agent involved in the interaction (column 3). The logistic function with parameters pmax (column 

4), pmin=0.05, m=1.3, and bs0 = 4 provides the probability of infection when biosecurity=4 on 

January 30 for all the probability functions. Only pmin for the probability function for the 

infection from visitors at the producers sites (last raw) is different with a value pmin=0.005. 

 

Infection 

probability  

Movement/ 

interaction type 

Agent’s biosecurity 

dependence 

Infection probability 

parameter pmax 

Prob. producer will 

become infected if 

returning pig truck is 

contaminated 

Pig transfer between 

premises 

Producer receiving 

pig truck 

0.35 

Prob. producer will 

become infected if 

feed truck is 

contaminated 

Feed delivery Producer receiving 

feed truck 

0.8 

Prob. feed truck will 

become contaminated 

if producer is infected 

Feed delivery Producer receiving 

feed truck 

0.15 

Prob. pig truck will 

become contaminated 

if producer is infected 

Pig transfer between 

premises 

Producer sending pig 

truck 

0.4 

Prob. feed mill will 

become infected if 

returning feed truck 

is contaminated 

Feed delivery Feed mill receiving 

feed truck 

0.25 

Prob. feed truck will 

become contaminated 

if feed mill is 

infected 

Feed delivery Feed mill sending 

feed truck 

0.99 

Prob. slaughter plant 

receiving area will 

become infected if 

pig batch is infected 

Pig transfer to 

slaughter plant 

Slaughter plant 

receiving pig truck 

0.99 
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Prob. pig truck will 

become contaminated 

if receiving area is 

infected 

Pig transfer to 

slaughter plant 

Slaughter plant 

receiving pig truck 

0.25 

Prob. producer will 

become infected if 

visitor truck if  is 

infected 

Random event 

without movement 

of pigs or feed 

Producer receiving 

visitor truck 

0.008  

 

 

 

 

 

4 The agent-based model’s human behavioral component 

Agents in our model are distinguished by several attributes, some of which describe and drive 

human decision-making and behavior in relation to biosecurity, namely, risk attitude, 

psychological distancing, and biosecurity increase and disease-response parameters for the 

function modeling the probability of deciding to increase biosecurity. The combination of risk 

attitudes and biosecurity behaviors builds the unique identity of the agents. The producer agents 

in particular have the ability to respond to their environment represented in our ABM by the 

epidemiological conditions. The relevant information is sent to producer agents in messages 

from their veterinarian agent.  The following paragraphs describe the human behavioral features 

of our ABM. 

Risk attitude and biosecurity 

In the setup stage, the model distributes the agents of each population (producers, feed mills and 

slaughter plants) among four risk attitude categories: risk tolerant, risk neutral, risk opportunist 

and risk averse. These four risk categories reflect risk attitudes observed from an online digital 

field experiment (data not shown). The participants’ strategies ranged from risk averse strategies 

that allocated more preventative biosecurity during outbreaks to risk-tolerant attitudes that 

gamble with very little biosecurity investment. A third observed risk strategy category was noted 

in the digital field-experiment data and delineated by individuals who invested resources in 

biosecurity when there was a high risk of disease and invested little to none in biosecurity during 

low risk scenarios. We refer to this group as opportunistic, in contrast to a fourth category, risk 

neutral, categorized with participants that did not adjust their biosecurity investment behavior 

with regard to observed risk of infection. In the agent-based model, the risk attitude assignment 

is done by way of a risk-attitude distribution for each agent population that randomly assigns one 

of the four categories to each agent. The relative proportion of each risk attitude category in the 

distribution is set by the user. In this way, it is possible to create agent populations with different 

risk attitude characteristics. Concretely, we used this feature in our study to create scenarios 

where we varied the relative proportions of risk tolerant, risk neutral, risk opportunist and risk 

averse agents in the population of producers and tested the effect of risk attitude shifts in the 

disease incidence outcome.  
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An important aspect of our ABM is the link between the agent’s risk attitude and biosecurity. We 

built this link by use of distributions associated with each risk category that characterize the 

biosecurity values for the specific category. While this feature allows characterization of the 

initial biosecurity landscape based on risk attitudes, for the study presented in this paper we 

assume the same distribution across all risk categories. Specifically, we assume that the initial 

(i.e. before the onset of PEDv) agent’s biosecurity is drawn from the same distribution regardless 

of their risk-attitude category. However, after the first simulated PEDv outbreak, the agents’ risk 

attitude drives the decisions on whether or not to increase biosecurity and therefore modulates 

the biosecurity landscape in the production system affecting disease transmission probabilities.  

 

 

 

 

 

Supplementary Figure 3. Distribution of initial biosecurity values for agents in all the risk-

attitude categories. The biosecurity in the ABM can vary continuously on a range [0, 8]. The 

distribution in the figure represents the simulated case where initially 50% of the agents have no 

biosecurity (biosecurity=0), 40% have low biosecurity (biosecurity=2.7), 10% have medium 

biosecurity (biosecurity=5.3) and 0% have high biosecurity (biosecurity=8).   
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Responsiveness and biosecurity increase  

In our ABM, the farm agent’s intention to invest in biosecurity or not is influenced by two 

factors: the agent’s risk attitude and the information on disease available to the agents. Each 

producer agent is connected with a veterinarian agent that collects information about disease 

occurrence in its farm service network and reports the number of infected farms weekly across 

the network. In our model, the probability that a farm agent increases its biosecurity level upon 

receiving the veterinarian’s message is described by a logistic function dependent on the number 

of farms infected in the agent’s environment (Supplementary Figure 4): 

𝑝𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐 = (𝑝𝑚𝑎𝑥 − 𝑝𝑚𝑖𝑛) ∙  
1

1 +  𝑒𝑚∙(𝑁𝐼−𝑟𝑠∗𝑁𝐼0)
+ 𝑝𝑚𝑖𝑛 

Where NI is the number of infected producers in the veterinarian’s network where the agent 

belongs. The parameters 𝑝𝑚𝑎𝑥 , 𝑝𝑚𝑖𝑛  and 𝑚 are as described in Supplementary Table 2 and the 

parameter NI0 is the number of infected producers at the inflection point.  The parameter values 

of the logistic function vary for each of the four possible risk attitude categories to which each 

farm agent is assigned (Supplementary Table 4). The rs parameter controls the relative distance 

among the probability curves (NI0 values) describing the biosecurity increase for four risk 

categories. For example, agents in the risk averse category increase biosecurity more promptly in 

response to disease presence than agents in the risk tolerant category, who instead 

probabilistically start to increase biosecurity at higher infection numbers (Supplementary Figure 

4). In the model, the intention probability curves are converted to behavior by drawing a random 

value from a standard uniform distribution. If the random number is smaller than the probability 

of to increase biosecurity, the producer agent increases its biosecurity level by a fixed quantity; 

otherwise, the agent maintains its current biosecurity level.   

 

 

Supplementary Table 4. Parameters of the biosecurity increase logistic functions for each of the 

four risk categories (risk averse, risk opportunist, risk neutral, risk tolerant). These values were 

estimated with a calibration experiment matching observed and simulated PEDv incidence and 

kept fixed for the scenario experiment presented in this study.  

 

Logistic 

probability 

function 

Risk attitude categories 

Parameter Risk averse Risk opportunist Risk neutral Risk tolerant 

𝑝𝑚𝑎𝑥 1 1 1 1 

𝑝𝑚𝑖𝑛 0 0 0 0 

m -0.95 -0.95  -0.8 -0.8 

NI0 with rs=0.09   0.18 1.53 2.88 4.23 
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Supplementary Figure 4. Biosecurity increase logistic functions. The agent’s probability to 

increase (or not) biosecurity is associated with the information about disease presence measured 

by the number of infected farms in the agent’s veterinarian network. Once a week, the 

veterinarian agent communicates the disease information across its network of producers. In each 

communication event, a producer responds (or not) with an increase of biosecurity according to 

the logistic probability designed for the producer’s risk attitude. The risk attitude influences the 

delay of response to the disease information as shown by the colored coded lines. With a relative 

shift parameter rs=0.09, risk averse producers have 50% chance of increasing biosecurity even 

when there is no infection in their veterinarian’s network and their response reaches 99% at 5 

infected farms. The 99% probability trigger for risk tolerant is 10 infected farms.    

 

 

 

 

 

Psychological discounting and relaxation of biosecurity compliance  

A relevant element of this model is psychological discounting, whereby the potential of 

maintaining an adopted biosecurity level is discounted through time with decreasing biosecurity 

compliance. The approach assumes that as time passes without infections on the agent’s farm, 

the perception of risk of infection decreases. The functional form that we adopted for such 

discounting is linear with time: 

𝐵𝑡 = (1 − 𝐷) ∙ 𝐵𝑡−1 
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With 𝐵𝑡 denoting the biosecurity level of a producer agent at time t and D the fixed discounting 

rate. The discounting process is only active during times when the agent is the susceptible state 

to reflect the situation in which the absence of disease leads to a relaxation in biosecurity 

compliance.  Instead, during time when the agent is infected, we assumed high compliance with 

biosecurity protocols and the value of the parameter D in the model is set to 0.  

 

 

 

 

5 Calibration of ABM’s human behavioral component   

The goal of the calibration was to estimate human behavioral parameters that are difficult to 

identify by direct evidence. The incidence records provided important reference patterns to be 

matched by our ABM. This required applying an optimization algorithm to the following three 

model parameters: response delay for biosecurity adoption, increase of biosecurity and 

psychological discounting. During the optimization, the other model parameters related to the 

system structure and epidemiological mechanisms were not varied and their values were set to 

values estimated from expert opinion. The ABM was run over the simulating period spanning 

from 12/27/2009 to 02/25/2018. The period until 05/31/2014 was used to reach stabilization of 

the model and both the observed and simulated datasets were set to 0 incidence values. On 

06/01/2014 coinciding with the first observed PEDv value, the model starts a disease outbreak to 

randomly infect three producer agents as indicated by the first observed incidence value. From 

this date the actual model calibration takes place.  

The calibration experiment had an objective function (OF) set to mathematically minimize the 

discrepancy between the observed and simulated response variable (weekly PEDv incidence). 

The OF values are calculated for each model iteration by the method of least 

squares. Specifically, each OF value is the square root of the average of square of difference 

between linearly interpolated data sets (observed and simulated output). The integration range is 

the intersection of argument ranges of these data sets. Prior to calibration, we experimented with 

parameter values to visually eliminate implausible ranges. We did not impose any relation or 

assumed correlation between parameters. The calibration was performed for over 15000 

simulations by using the OptQuest optimization package supported in the AnyLogic software. 

OptQuest is an optimizer that uses scatter search. We ran the calibration experiment twice for 

different value ranges of the three parameters. In the first calibration, we started with broad 

ranges and narrowed them to more suitable ranges to match the records. In the second 

simulation, we refined the optimization search with smaller value steps over the narrow ranges 

(Supplementary Table 4).  

Lacking empirical information on risk attitude, we made the assumption of populations with 

equal proportions (25%) of agents in each of the four risk attitude categories. Within each risk 

category, the biosecurity configuration at model startup had the following values (Supplementary 

Figure 3): on a biosecurity scale from 0 to 8, 50% of agents had initial biosecurity = 0 (no 

biosecurity); 40% of agents had initial biosecurity=2.7 (low), 10% had initial biosecurity=5.3 

(medium) and 0% had initial biosecurity=8 (high). This initial model configuration of biosecurity 

represents a situation in which most producers implement biosecurity on a low-to-moderate level 
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before the simulated PEDv incursion. We made this assumption based on exchanges with 

veterinarian collaborators.   

 

Supplementary Table 5. Calibration parameters, their search value range and incremental step 

and the parameter values on which the objective function converged. The last row reports the 

objective function score for the best parameter set.       

 

Parameter Search range Search step Best score 

values 

Biosecurity increase 1.0 - 2.2 0.2 1.4 

Psychological distancing  0.004 - 0.012 0.002 0.004 

Delay of response to disease  0.08 - 0.12 0.01 0.1 

Objective function (OF)   3.04 

 

 

The calibration converged on the set of parameter values shown in Supplementary Table 4. The 

136 OF scores ranged from 3.04 to 4.75. We decided to extract the parameter sets that had only 

slightly higher OF scores than the best fit (OF ≤  3.19; ~ 50% of data, Supplementary Figure 5) 

to analyze the uniqueness of the best fit. We found a relationship among the parameter values of 

these sets meaning first that there are constraints among the human behavioral parameters 

necessary to fit the observed incidence data and second that a range of reasonably consistent 

human behavioral processes can give rise to the observed patterns. A Pearson correlation matrix 

(Supplementary Table 6), helps explain how these constraints interplay to create a decreasing 

trend in the PEDv incidence. If psychological distancing increases (higher relaxation rate in 

biosecurity), the disease incidence trend can only be negative when the producer agents respond 

to disease with shorter delay and higher biosecurity increase. If instead psychological distancing 

decreases, meaning that the level of biosecurity is generally maintained at all times, it is possible 

to reduce the output incidence even in the case when the agent producers act with some delay in 

their response to disease and they only increase biosecurity by little.  

To choose the parameter values for our study, we took the 10 best OF solutions (OF score ≤ 

3.09, 5% of data, Supplementary Figure 5) and selected the parameter set with intermediate 

values within the ranges covered by these best solutions. The scenario analysis described in this 

paper was therefore run with the following values:  delay of response = 0.09; biosecurity increase 

= 1.4; psychological distancing = 0.008. 
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Supplementary Figure 5. Calibration parameter sets and related objective-function (OF) scores. 

The graph reports the subset (50%) of parameter sets with OF score ≤ 3.19. The three calibration 

variables – biosecurity increase, delay in response and psychological distancing – are represented 

by the three dimensions of the cube, while the variable OF is represented by color. The lower the 

OF score, the better is the fit to the observed data. The points of the 10 best parameter 

combinations are surrounded by a square symbol (OF score ≤ 3.09).   
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Supplementary Table 6.  Pearson correlation values among the three human behavioral 

parameters varied in the calibration. The correlation values are for the subset of parameter sets 

with OF score < 3.19. Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

 Biosecurity 

increase 

Psychological 

distancing 

Delay of 

response 

Biosecurity 

increase 

1.00   

Psychological  

distancing 

0.037     1.00  

Delay of 

response 

0.64   *** -0.35   ** 1.00 
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