## SUPPORTING INFORMATION

# Structural Evolution of α-Fe<sub>2</sub>O<sub>3</sub>(0001) Surfaces under Reduction Conditions Monitored by Infrared Spectroscopy

Ludger Schöttner, Alexei Nefedov, Chengwu Yang, Stefan Heissler, Yuemin Wang,\* Christof Wöll\*

Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany

\*E-mails: yuemin.wang@kit.edu; christof.woell@kit.edu

### 1. Near edge X-ray absorption fine spectra (NEXAFS)

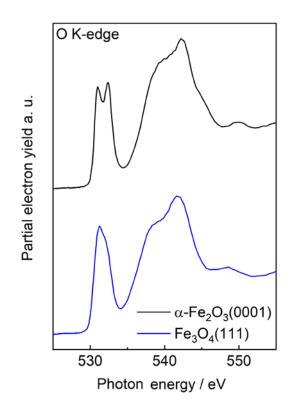
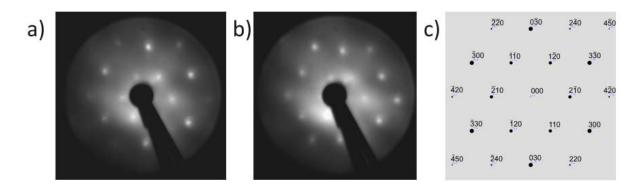
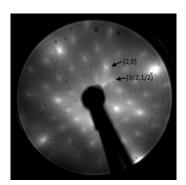



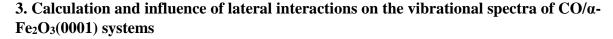

Figure S1: O K-edge NEXAFS spectra recorded on clean  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub>(0001) and Fe<sub>3</sub>O<sub>4</sub>(111) surfaces.

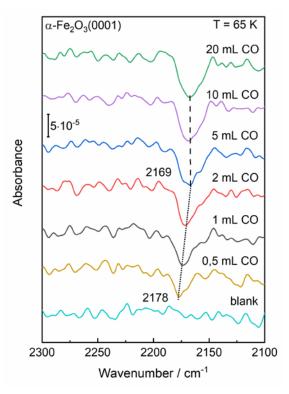

For  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub>(0001), there are two components on the pre-peak around 532 eV of approximately equal intensity, clearly separated by 1.3 eV, whereas for Fe<sub>3</sub>O<sub>4</sub>(111), the second feature appears only as a shoulder at +0.7 eV in agreement with literature (Figure S1).<sup>1</sup> The pre-peak is commonly associated with the excitations of O 1s electrons into O 2p states hybridized with Fe 3d orbitals. This orbital hybridization causes a symmetry related ligand field splitting in e<sub>g</sub> and t<sub>2g</sub> energy levels on d-electrons.<sup>2, 3, 4</sup> In such scenario, one might expect for ferric oxide, which contains Fe<sup>3+</sup> cations only, an intensity ratio of 3:2 on Fe d<sup>5</sup> electron configurations. However, the X-ray absorption spectra on  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub>(0001) do not agree in this point, which is oftentimes mentioned as an intensity problem. The common interpretation of this problem was that for e<sub>g</sub> electrons the O 2p – Fe 3d hybridization is stronger and this causes the higher intensity of the corresponding feature including exchange splitting effects.<sup>2, 5</sup>

# 2. Supplementary low-energy electron diffraction (LEED) data



**Figure S2:** LEED patterns recorded on  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub>(0001) at a) 90 eV and b) 120 eV. c) Simulation of an electron-weighted LEED pattern for  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub>(0001) surfaces.


The LEED pattern were obtained on the pristine surface of  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub>(0001) and agree perfectly with literature data.<sup>6</sup> The foregrounded beam intensity at the (1×1)-peaks, measurable on energies around 90 eV for incident electrons, is a characteristic feature for the hematite (0001) unit cell symmetry and indicates a high surface activity and cleanliness. This suggests the electron-weighted LEED pattern from a computed  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub>(0001) structure due to the resemblance with the experimental pattern (Figure S2a-c).

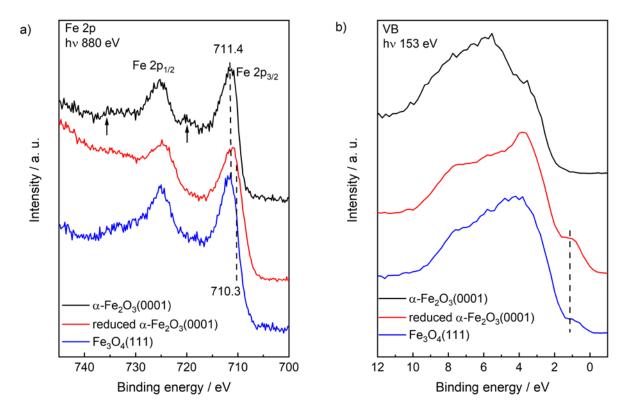



**Figure S3:** LEED pattern recorded on a Fe<sub>3</sub>O<sub>4</sub>(001) surface at 90 eV.

The LEED pattern for the reconstructed ( $\sqrt{2} \times \sqrt{2}$ )R45° Fe<sub>2</sub>O<sub>3</sub>(001) surface (Figure S3) comprises a specific "fingerprint", which let one distinguish between a SCV structure and a

"Fe-dimer" structure.<sup>7</sup> In case the half-order spots (e.g 3/2,1/2) occur in a similar intensity to the integer spots (e.g. 2,0), the SCV structure is obtained. In the "Fe-dimer" structure the  $(\sqrt{2}\times\sqrt{2})R45^\circ$ -related spots are significantly weakened. Here, we assigned the LEED pattern to a SCV structure.



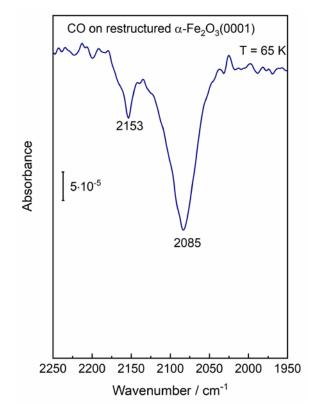



**Figure S4:** IRRA spectra obtained after exposing pristine  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub>(0001) to different doses of CO at 65 K. The spectra were recorded at an incidence angle of 80° with p-polarized light.

In the past, attempts have been made to mathematically define coverage-dependent wavenumber shifts on CO adsorbates. Coupling contributions  $\Delta \omega_{dyn} = \omega - \omega_0$  between adsorbed CO molecules can be approximated using the modified Hammaker equation (dynamic shift).<sup>8, 9, 10, 11</sup>

$$\omega = \omega_0 \left( 1 + \frac{\alpha_{\rm v} \theta \sum_0}{1 + \alpha_{\rm e} \theta \sum_0} \right)^{1/2}$$

The calculation of the coupling contribution is now carried out using the example of CO on  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub>(0001). The wavenumber  $\omega_0$  of an isolated CO oscillation ( $\theta \rightarrow 0$ ) was experimentally determined with 2178 cm<sup>-1</sup> (Figure S4). Here the polarizability coefficients  $\alpha_{\parallel} = 2.6 \text{ Å}^3$ , which applies to an E-field vector in IR radiation aligned parallel to the CO molecule axis, was used to calculate  $\alpha_e = 2,573 \text{ Å}^3$  with help of  $\alpha_{\parallel} = \alpha_v + \alpha_e$  and  $\alpha_v = 0,027 \text{ Å}^3$ .<sup>11, 12</sup> The dipole sum  $\sum_{0} = T + V$  is composed of the direct dipole sum  $T = Cn^{3/2}$  and the image dipole V. An image dipole was not considered on the dielectric substrate. The expression  $n = 2/\sqrt{3}a^2$  for describing the atomic density of the adsorption sites was determined by the trigonal symmetry of hematite using the lattice constant a = 5,04 Å.<sup>10, 13</sup> C is a constant with the size 8,89.<sup>10</sup> The direct dipole sum T was calculated to be 0,086 Å<sup>-3</sup>. The coupling contribution to the wavenumber shift  $\Delta \omega_{dvn}$ is thus 2.0 cm<sup>-1</sup> in the case of a completely covering surface, i.e. using  $\theta = 1$  ML CO on  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub>(0001). The calculated interval to the coupling contribution is comparatively small in contrast to the total measured frequency difference. As a result, the observed frequency shift is mostly caused by a direct adsorbate-substrate interaction (static shift). Our calculated value is in good agreement with the previous reported value of 1.5 cm<sup>-1</sup>, which was obtained on CO covered  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> powder samples.<sup>11</sup>




#### 4. X-ray photoemission spectra (XPS)

**Figure S5:** Comparitive presentation of photoelectron spectra for  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub>(0001), strongly reduced  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub>(0001) and sputter/annealed Fe<sub>3</sub>O<sub>4</sub>(111) surfaces in a) Fe 2p and b) valence band region.

The indicated BEs of Fe 2p3/2 lines of Fe<sup>3+</sup> and Fe<sup>2+</sup> states at 711.4 and 710.3 eV are around the reported reference energies of 711.0 and 710.0 eV with satellites (in Figure S5a marked with arrows) respectively.<sup>14,15,16</sup> We used a binding energy of 530.0 eV to determine Fe 2p core level binding energies. The prepared  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub>(0001) surface only consists Fe<sup>3+</sup> cationic states and was identified by a centered line at 711.4 eV on Fe 2p<sub>3/2</sub> core level including a satellite. The emerge of Fe<sup>2+</sup> is traced by additional Fe 2p lines, which can be correspondingly observed by a strong weakening of the satellite peaks.<sup>17</sup> The electronic structure of a strongly reduced hematite sample is in overall agreement with the sputter/annealed Fe<sub>3</sub>O<sub>4</sub>(111) surface. Fe<sup>2+</sup> species on reduced hematite were further tracked in the valence band region (Figure S5b). Here, the VB spectrum shows a peak at 1 eV, which originates from Fe  $3d^6$  final states, associated with Fe<sup>2+</sup> ions.<sup>18</sup> However a clear separation of certain Fe 3d states remains complex and is mainly assumed to result from a broad photoemission contribution of O 2p states between 2-8 eV.<sup>19,20</sup>

## 5. Supplementary IRRAS data



**Figure S6:** IRRA spectrum (p-polarized) obtained after saturation adsorption of CO (1 L) at 65 K on a highly reduced  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub>(0001) surface created via atomic hydrogen treatment at RT followed by Ar<sup>+</sup>-sputtering and post-annealing at 950 K in 10<sup>-4</sup> mbar oxygen.

According to STM the boundaries of several surface terminations of  $Fe_3O_4(111)$  are quite close together and tend to manifest in equilibration with the oxygen environment, so it should not wonder that the surface structure of  $Fe_3O_4(111)$  can be transformed from  $Fe_{tet1}$  termination to  $Fe_{oct2}$ -termination when the partial pressure of oxygen is lowered during crystal preparation.<sup>21</sup> This is a crucial point, which needs to be considered carefully when discussing the surface stability of  $Fe_3O_4(111)$ . According to some DFT studies the  $Fe_{oct2}$ -terminated  $Fe_3O_4(111)$  surface is only preferable for decreased values of the oxygen-chemical potential <sup>22</sup> or only little

more stable than  $Fe_{tet1}$ -termination over a wide range of oxygen pressures.<sup>23</sup> When the sputterreduced surface of  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub>(0001) is prepared under more oxidizing conditions (10<sup>-4</sup> mbar O<sub>2</sub>, 950 K) as given in the main script, the surface structure is dominated by a Fe<sub>tet1</sub>-terminated Fe<sub>3</sub>O<sub>4</sub>(111) structure within the Fe<sub>3</sub>O<sub>4</sub>(111)/Fe<sub>1-x</sub>O biphase as indicated by a single Fe<sup>3+</sup>-related vibrational band at 2150 cm<sup>-1</sup>, which correspond to linearly adsorbed CO molecules on tetrahedral Fe<sup>3+</sup> ions (Figure S6). After this preparation routine, Fe<sub>oct2</sub> species only occur in minor fractions on Fe<sub>3</sub>O<sub>4</sub>(111) surface domains as confirmed by the absence of vibrational bands at 2166 cm<sup>-1</sup> and 2106 cm<sup>-1</sup>, which would be associable to octahedral Fe<sup>3+</sup> and Fe<sup>2+</sup> surface ions from Fe<sub>3</sub>O<sub>4</sub>(111), respectively. The other sharp vibrational band at 2085 cm<sup>-1</sup> correspond to octahedral Fe<sup>2+</sup> ions from iron terminated Fe<sub>1-x</sub>O(111) surface. This result is in excellent agreement with the experimental findings and propositions of the Osgood group<sup>24,25</sup> as well as of the Thornton group.<sup>26</sup>

- <sup>1</sup> Z. Y. Wu, S. Gota, F. Jollet, M. Pollak, M. Gautier-Soyer, C. R. Natoli, *Phys. Rev. B* 1997, 55, 4, 2570-2577.
- <sup>2</sup> T.-J. Park, S. Sambasivan, D. A. Fischer, W.-S. Yoon, J. A. Misewich, S. S. Wong, *J. Phys. Chem. C* 2008, 112, 10359-10369.
- <sup>3</sup> F. M. F. de Groot, M. Grioni, J. C. Fuggle, *Phys. Rev. B* 1989, 40, 8, 5715-5723.
- <sup>4</sup> J. H. Paterson, O. L. Krivanek, *Ultramicroscopy* **1990**, 32, 319-325.
- <sup>5</sup> I. Leonov, A. N. Yaresko, V. N. Antonov, V. I. Anisimov, *Phys. Rev. B* 2006, 74, 165117, 1-14.
- <sup>6</sup> W. Weiss, W. Ranke, Prog. Surf. Sci. 2002, 70, 1-151.
- <sup>7</sup> G. Parkinson, Surf. Sci. Rep. 2016, 71, 272-365.
- <sup>8</sup> M. Buchholz, X. Yu, C. Yang, S. Heißler, A. Nefedov, Y. Wang, C. Wöll, Surf. Sci. 2016, 662, 247-252,
- <sup>9</sup> P. Hollins, J. Pritchard, Chem. Phys. Lett. 1980, 75, 2, 378-382.
- <sup>10</sup> G. D. Mahan, A. A. Lucas, J. Chem. Phys. 1978, 68, 1344-1348.
- <sup>11</sup> A. Zecchina, D. Scaranao, A. Reller, J. Chem. Soc., Faraday Trans. 1, 1988, 84, 7, 2327-2333.
- <sup>12</sup> M. Scheffler, Surf. Sci. 1979, 81, 562-570.
- <sup>13</sup> R. L. Blake, R. E. Hessevick, Am. Mineral. **1966**, 51, 123-129.
- <sup>14</sup> T. Yamashita, P. Hayes, Appl. Surf. Sci. 2008, 254, 2441-2449.
- <sup>15</sup> W. Weiß, Surf. Sci. **1997**, 377-379, 943-947
- <sup>16</sup> R. L. Kurtz, V. E. Henrich, Surf. Sci. 1983, 129, 345-354.
- <sup>17</sup> Th. Schedel-Niedrig, W. Weiss, R. Schlögl, *Phys. Rev. B* **1995**, 52, 24, 17449-17460.
- <sup>18</sup> S. Liu, S. Wang, J. Guo, Q. Guo, *RSC Advances* **2012**, *2*, 9938-9943.
- <sup>19</sup> R. J. Lad, V. E. Henrich, *Phys. Rev. B* **1989**, 39, 18, 13478-13485.
- <sup>20</sup> A. Fujimori, M. Saeki, N. Kimizuka, M. Taniguchi, S. Suga, *Phys. Rev. B* 1986, 34, 10, 7318-7328.
- <sup>21</sup> T. K. Shimizu, J. Jung, H. S. Kato, Y. Kim, M. Kawai, Phys. Rev. B, 2010, 81, 235429.
- <sup>22</sup> J. Noh, O. Osman, S. G. Aziz, P. Winget, J.-L. Bredás, *Chem. Mater.* 2015, 27, 5856-5867.
- <sup>23</sup> L. Zhu, K. L. Yao, Z. L. Liu, *Phys. Rev. B* 2006, 74, 035409.
- <sup>24</sup> N. Camillone III, K. Adib, J. P. Fitts, K. T. Rim, G. W. Flynn, S. A. Joyce, R. M. Osgood, *Surf. Sci.* 2002, 511, 267-282.
- <sup>25</sup> K. T. Rim, J. P. Fitts, T. Müller, K. Adib, N. Camillone III, R. M. Osgood, S. A. Joyce, G. W. Flynn, Surf. Sci. 2003, 541, 59-75.
- <sup>26</sup> N. G. Condon, F. M. Leibsle, A. R. Lennie, P. W. Murray, T. M. Parker, D. J. Vaughan, G. Thornton, Surf. Sci. 1998, 397, 278-287.