'.\' frontiers

Supplementary Material

In this document we provide some details about how the analysis and the figure in the main text were
produced. We used Wolfram Mathematica 11.3 to produce the scatter plots while Adobe Illustrator CC

2019 was used to assemble all the final images.

1 FIGURE 1

PCA Dist. match. - Laplacian ISOMAP
Eigenmaps

t-SNE

0 5 10 2R
B sheet (n. res)

Figure S1. Projections of the trajectory using each of the various dimensionality reduction algorithms
with points colored in accordance with the secondary structure.

1.1 Measuring the secondary structure content

Starting from the PDB trajectory, we used DSSP (http://swift.cmbi.ru.nl/gv/dssp/HTML/distrib. html)
for the secondary structure assignment of each residue. For reference, the DSSP secondary structure
classification is as follows: B, isolated 3-bridge; E, extended strand; G, 31¢-helix; H, a-helix; I, m-helix; T,
turn; S, bend; C, loop, irregular element, or none of the above (“coil”). The following bash script was used
to prepare the inputs and to process the output from the DSSP analysis:

#!/bin/bash

for i in {1..25311}; do
save each frame in a temporary file
head —$(echo ”$i = 257”| bc) traj.pdb | tail —257 > temp.pdb
run DSSP and output only the secondary structure assignment
mkdssp —i temp.pdb | tail —16 | awk ’{print substr($0,14,2)}" \
>> ss.tmp
count the helical content

Supplementary Material

alphanum=$(grep —c *[G,H]’ ss.tmp)
count the strand content
betanum=$(grep —c E ss.tmp)
store to a file
echo $alphanum $betanum >> ss.dssp
rm temp.pdb ss.tmp

done

Listing 1. Secondary structure assignment from a PDB trajectory using DSSP and bash.

This script generates a file called ss.dssp that contained the number of residues with an alpha helical
shape in the first column and the number of residues with a beta sheet structure in the second column. This

file was used when creating the colours of the points in all the projections.
1.2 PCA projection

The PCA projection was generated by using the following calls to the sklearn.decomposition.PCA library
and Python 2.7. The script below shows how the image shown in the top left of Fig. 1 was generated from
the trajectory. Note that, as suggested in the literature |Yuguang et al.| (2005); |Konrad| (2006); Altis et al.
(2007)), instead of using the dihedral angles directly in the PCA, we used their projection on the unit circle.

from numpy import *
from sklearn.decomposition import PCA

X=loadtxt(phi_psi.dat)
pca=PCA(n_components=2)
pca. fit (X)
J=pca.transform (X)
savetxt (”PCA.proj”, J)

Listing 2. PCA projection using scikit-learn.

1.3 Distance Matching

The Distance Matching projection was generated using the program dimred, which is part of the Sketch-
map suite that is downloadable from https://github.com/cosmo-epfl/sketchmap. Starting from the list of the

backbone ¢, v dihedral angles we obtained the projection with the following command:

dimred —D 30 —d 2 —center —pi 6.28318530717958647692528676656 \
—preopt 100 < phi_psi.dat > DM. proj

Listing 3. Distance matching using dimred.

Multi-dimensional scaling is performed to get the starting intial positions followed by an iterative

optimization of 100 stpes of conjugate gradient (-preopt 100).

Supplementary Material

1.4 Lapclacian Eigenmaps

Spectral Embedding is an approach for calculating a non-linear embedding. Scikit-learn implements
Laplacian Eigenmaps, which finds a low dimensional representation of the data using a spectral
decomposition of the graph Laplacian. The Laplacian Eigenmaps projection was generated using the
sklearn.manifold.spectral_embedding library and Python 2.7. The script below shows how the projection in

Fig. 1 was produced from the trajectory.

from numpy import x
from sklearn import manifold

X=loadtxt(distancematrix .dat)

n_neighbors=15

n_components=2

le = manifold. SpectralEmbedding (n_components=n_components, \
n_neighbors=n_neighbors , \
affinity="precomputed’)

J=le.fit_transform (X)

savetxt(”LE. proj”, J)

Listing 4. Lapclacian Eigenmaps using scikit-learn.

Notice that in order to account for the periodicity of the dihedral angles a precomputed distance matrix is

given as input to the library.

1.5 ISOMAP projection

The ISOMAP projection in Fig. 1 was generated using the following calls to the sklearn.manifold.Isomap

library and Python 2.7. Here is the script that was used to obtain the projection from the trajectory:

from numpy import x
from sklearn import manifold

X=loadtxt(phipsi.dat)
n_neighbors=15
n_components=2

isomap = manifold.Isomap(n_neighbors, n_components=2)

J=isomap. fit_transform (X)
savetxt (”ISOMAP. proj”, J)

Listing 5. ISOMAP projection using scikit-learn.

We used the default settings when defining the geodesic distance and the method for finding shortest path

between two points.

Frontiers 3

Supplementary Material

1.6 t-SNE projection

To produce the t-SNE projection we use the library sklearn.manifold. TSNE and Python 2.7. The script

used to obtain the projection shown in Fig. 1 is as follows:

from numpy import *
from sklearn import manifold

X=load (distancematrix . dat)
n_neighbors=15
n_components=2

tsne=manifold .TSNE(n_components=2, perplexity=50.0, \
early_exaggeration=10.0, \
learning_-rate=100.0, n_iter=3500, \
n_iter_without_progress=300, \
min_grad_norm=1le—07, metric="precomputed”,\
init="random’, method="barnes_hut”, angle=0.5)

J=tsne . fit_transform (X)

savetxt ("TSNE. proj”, J)

Listing 6. t-SNE projection using scikit-learn.

As was the case for the Lapclacian Eigenmaps we provided a pre-computed distance matrix to account

for the periodicity of the dihedral angles.
1.7 Sketch-map projection

The sketch-map projection was generated using the libraries part of the sketch-map suite downloadable
from https://github.com/cosmo-epfl/sketchmap. The procedure used to generate the projection is already
described in details in Ref.|Ardevol et al. (2015). In essence, however, 1000 landmarks points were selected
from the initial trajectory using FPS, which is implemented in the program dimlandmark. An optimal 2D
sketch-map projection for these landmarks was then produced using the program dimred. Once a projection
for each of the landmarks was found, the remainder of the trajectory was projected into the sketch-map
space using dimproj. The commands used to produce the sketch-map projection shown in Fig. 1 is as

follows:

select 1000 landmarks using FPS

dimlandmark —D 30 —n 1000 —pi 6.283185307 \
—mode minmax —w —lowmem < phipsi.dat \
> lands1000 .HD

running a preliminary iterative metric MDS
grep —v \# lands1000.HD | \
dimred —vv —D 30 —d 30 \

—pi 6.283185307 \

—center —preopt 100 > lands1000.imds 2>>log
grep —v "#” lands1000.imds | awk ’{print $1, $2}° > tmp
grep —v \# lands1000.HD | \

dimred —vv —D 30 —d 30 \
—pi 6.283185307 \

Supplementary Material

—center —preopt 100 —fun—hd 6,8,8 \
—fun—Id 6,2,8 —init tmp > lands1000.ismap 2>> log

GW=$ (awk 'BEGIN{maxr=0} !/#/{r=sqrt($1°2+$2°2); \

if (r>maxr) maxr=r} END{print maxr*1.2}’ 1ands1000.imds)
NERR=$ (awk ’/Error/{print $(NF)}’ lands1000.imds | tail —n 1)
SMERR=$ (awk ’/Error/{print $(NF)}’ 1lands1000.ismap | tail —n 1)

running sketch—map
IMIX=1.0
MAXITER=10
for ((ITER=1; ITER<=SMAXITER; ITER++)); do
MDERR=$NERR
if [! —e $FILELD.gmds_$ITER]; then
grep —v \# lands1000.HD | \
dimred —vv —D 30 —d 30 \
—pi 6.283185307 \
—center —preopt 50 —grid $GW,21,201 \
—fun—hd 6,8,8 —fun—Id 6,2,8 —init tmp —gopt 3 \
—imix $IMIX > lands1000.gmds_$ITER 2>>log
fi
grep —v "#” lands1000.gmds_$ITER | awk ’{print $1, $2}° > tmp
GW=$ (awk 'BEGIN{maxr=0} !/#/{r=sqrt($1«$1+$2x$2); \
if (r>maxr) maxr=r} END{print maxr%1.2}" lands1000.gmds_$ITER)
get the residual error
NERR=$ (awk ’/Error/{print $(NF)} lands1000.gmds_$ITER | \
tail —n 1)
IMIX=$ (echo "$IMIX $SMERR $NERR” | \
awk “{new=$2/($2+$3); if (new<0.1) new=0.1; \
if (new>0.5) new=0.5; print newx$1 }’)
if [¢ echo $MDERR $NERR | \
awk —v i=$ITER *{ if (i>1 && (($1=$2)/$2) = (($1-$2)/$2)<le—4)\
print “done”; else print "nope”;}’ ¢ = “done” \
]; then ((ITER++)); break;
fi;
done

Doing final fit
((ITER—-))
grep —v "#” lands1000.gmds_$ITER | awk *{print $1, $2}° > tmp
grep —v \# lands1000.HD | dimred —vv -D 30 —d 30 \
—pi 6.283185307 \
—center —preopt 100 \
—grid $GW,21,201 —fun—hd 6,8,8 \
—fun—Id 6,2,8 —init tmp —gopt 10 > lands1000.gmds 2>>log

Output only the final projection
grep —v "#” lands1000.gmds | awk {print $1, $2}° > lands1000.skmap

Out—of—sample embedding

dimproj —D 30 —d 2 —P 1lands1000.HD —p lands1000.skmap \
—pi 6.283185307 —w —grid $GW,21,201 —fun—hd 6,8,8 \
—fun—Id 6,2,8 —cgmin 3 < phipsi.dat > SKMAP. proj

Listing 7. Sketch-map workflow.

This script generated a file called SKMAP. proj which contained the low dimensional projection of the

high-dimensional backbone dihedrals feature space.

Frontiers 5

Supplementary Material

Figure S2. PCA projection in 3D. Points are colored in accordance with the secondary structure, the
PAMM clusters and the macro-clusters described in the main text.

2 3DPCA

The 3D PCA projection was generated using the sklearn.decomposition.PCA library and Python 2.7, as
described previously for the 2D case. We used to following script to generate the 3D embedding:

from numpy import
from sklearn.decomposition import PCA

X=loadtxt(phi_psi.dat)
pca=PCA(n_components=3)
pca. fit (X)
J=pca.transform (X)
savetxt (”PCA.proj”, J)

Listing 8. 3D PCA projection using scikit-learn.

3 PAMM CLUSTERING

PAMM clustering was performed directly in the high-dimensional backbone dihedrals feature space

using the FORTRANO90 code available at https://github.com/cosmo-epfl/pamm. which was described in

\Gasparotto et al.[(2018)) using the. The clustering procedure has been applied to the full original trajectory
from Ref. Ardevol et al. (2015) using the following command:

pamm —d 30 —fpoints 0.1 —qgs 0.95 —bootstrap 41 < fulltraj.phipsi
Listing 9. PAMM HD clustering.

The PAMM code allows you to use periodic variables. In this case the periodicity of these variables have
been hard coded into the particular version of the software used. When using other versions of the code,
however, you may have to specify that the input variables are periodic by using a suitable command line

flag.

Supplementary Material

PAMM produced a series of file: out.pamm (a Gaussian Mixture Model describing the Probability Density
Function generating the data), out.grid (a sub-grid sampled using FPS approximating the whole dataset),
out.voronoislinks (the Voronoi assignment that allows one to reconstruct the original dataset from the FPS
grid), out.bs the overlap between clusters estimated from the bootstrapping. More details on PAMM can be

found in Ref. Gasparotto et al. (2018).

REFERENCES

Altis, A., Nguyen, P. H., Hegger, R., and Stock, G. (2007). Dihedral angle principal component analysis of
molecular dynamics simulations. The Journal of Chemical Physics 126, 244111. doi:10.1063/1.2746330

Ardevol, A., Tribello, G. A., Ceriotti, M., and Parrinello, M. (2015). Probing the unfolded configurations
of a [-hairpin using sketch-map. Journal of Chemical Theory and Computation 11, 1086—-1093.
doi:10.1021/ct500950z. PMID: 26579758

Gasparotto, P., Meifiner, R. H., and Ceriotti, M. (2018). Recognizing local and global structural motifs at the
atomic scale. Journal of Chemical Theory and Computation 14, 486—498. doi:10.1021/acs.jctc.7b00993.
PMID: 29298385

Konrad, H. (2006). Comment on: “energy landscape of a small peptide revealed by dihedral angle principal
component analysis”. Proteins: Structure, Function, and Bioinformatics 64, 795-797. doi:10.1002/prot.
20900

Yuguang, M., H., N. P,, and Gerhard, S. (2005). Energy landscape of a small peptide revealed by dihedral
angle principal component analysis. Proteins: Structure, Function, and Bioinformatics 58, 45-52.

doi:10.1002/prot.20310

Frontiers 7

	Figure 1
	Measuring the secondary structure content
	PCA projection
	Distance Matching
	Lapclacian Eigenmaps
	ISOMAP projection
	t-SNE projection
	Sketch-map projection

	3D PCA
	PAMM Clustering

