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Appendix 1: Size-dependence of attack success  15 
 16 
Following encounter beyond an intermediate size ratio (kpk) of maximal attack success—as resources 17 
become much too large for the consumer to pursue, subjugate and ingest—attack success probability (A), 18 
and therefore also consumption rate (and thus, effectively, search rate), should decline. Previous empirical 19 
studies suggest this decline in A is a power-law (Persson et al, 1998; Aljetlawi et al., 2004; Brose et al., 20 
2008; Vucic-Pestic et al., 2010). To evaluate the generality of this pattern and to obtain estimates of range 21 
of values the scaling exponent can take, we compiled from the literature a dataset of laboratory studies that 22 
measure consumption rate (main text Equation (1); cf. main text Equation (5)) at different size ratios (k = 23 
mR/mC) for the same consumer-resource pair. Methodology for extracting these data is described in Pawar 24 
et al. (2012). We found 11 laboratory studies, which yielded 16 responses of consumption rate with respect 25 
to body-size size ratio, between 25 distinct consumer-resource pairs (including different life stages of the 26 
same species) (Fig. S1; Table S2). When functional responses were measured, we recorded consumption 27 
rates at every reported resource density. We excluded studies with less than four distinct size ratio values, 28 
and where multiple consumer or resource species were used simultaneously.  29 
 30 
Consumption rate estimates at each unique size ratio were converted to the product of per-capita search rate 31 
and attack success probability, 𝑎𝑎𝑎𝑎, by dividing out resource biomass density from main text Equation (1) 32 
(with f = 1 for the searching phase of the interaction). Note that this assumes, as does the attack success 33 
model (main text Equation (4)), that per-capita attack success probability is independent of resource density. 34 
For functional responses, we used consumption rate at the lowest resource density (linear part of the 35 
response) to calculate search rate. Multiple consumer-resource pairs with identical taxonomic identities, 36 
life stages, and body masses were considered pseudoreplicates.  37 

 38 
Table S1. Criteria used to assign dimensionality (D) and foraging strategy to interactions. The habitat of 39 
an interaction is defined by the space in which the resource is typically captured. Dimensionality is mainly 40 
determined by the movement space of the resource. For example, a pelican catching a fish at the water 41 
surface is classified as a 2D aquatic interaction.  42 
 43 

Consumer foraging movement and 
location in habitat 

Resource movement and location in 
habitat D Foraging 

strategy 
Flying in air or swimming in water column Flying in air or swimming in water column 3D Active capture 

Moving on land or water bottom/surface Flying in air or swimming in water column 3D Active capture 
Flying in air or swimming in water column Moving on land or water bottom/surface 2D Active capture 
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Flying in air or swimming in water column Moving on land or water bottom/surface 2D Active capture 
Moving on land or water bottom/surface Moving on land or water bottom/surface 2D Active capture 

Sessile on land or water bottom/surface or 
suspended in water column 

Flying in air or swimming in water column 3D Sit-and-wait 

Sessile on land or water bottom/surface Moving on land or water bottom/surface 2D Sit-and-wait 
Actively swimming in water column Sessile or passive in water column 3D Grazing 

Flying in air or swimming in water column Sessile on land or water bottom/surface 2D Grazing 
Moving on land or water bottom/surface Sessile on land or on water bottom/surface 2D Grazing 

 44 
Each consumer-resource pair was assigned an interaction dimensionality based on consumer search space 45 
(Table S1, main text Fig. 1; also see Pawar et al. (2012)). If a consumer searches (by flying, swimming, or 46 
sitting-and-waiting) for resources on habitat surfaces (e.g., water surface, benthos, grassland), the 47 
interaction is two dimensional (2D), and if it searches habitat volume, the interaction is three dimensional 48 
(3D). As discussed in the main text, this apparently simple classification of interaction dimensionality is 49 
consistent with detection regions typically having Euclidean/integer dimensionality. In addition, 50 
dimensionality was assigned at the level of life stage (provided a consumer-resource pair was resolved to 51 
that level), to minimize the confounding effect of ontogenetic diet shifts and associated changes in foraging 52 
dimensionality and strategy. 53 
 54 
Species average body masses were obtained from the original study when reported or estimated using 55 
methods previously described (Dell et al., 2011; Dell et al., 2013). For each consumption-rate dataset we 56 
recorded the size ratio (kpk) at which search rate 𝑎𝑎𝑎𝑎 peaked. An alternative approach would be to estimate 57 
kpk by fitting a unimodal function, but most of the data lack sufficient measurements on both sides of the 58 
peak to allow reliable parameter estimates. To evaluate the relationship between aA and k, we first split 59 
each dataset (response) into rising (all 𝑎𝑎𝑎𝑎 values ≤ kpk) and falling (all 𝑎𝑎𝑎𝑎 values ≥ kpk) parts. We then 60 
performed separate ordinary least squares (OLS) regression in rising and falling parts of log10 consumer 61 
mass-normalized search rate (𝑎𝑎𝑎𝑎/𝑚𝑚C

0.7 in 2D and 𝑎𝑎𝑎𝑎/𝑚𝑚C
1.05 in 3D; approximately the exponents for scaling 62 

of size-scaling of search rate reported by Pawar et al (2012)) vs. log10k. This consumer mass correction 63 
isolates the effect on consumption rate of size-ratio from that of consumer mass. This yielded estimates of 64 
exponents for the rising and falling parts (α and γ respectively) for each dataset. We did not attempt to 65 
estimate either exponent if the number of data points in the respective rising or falling part of the series was 66 
less than four. To evaluate whether a power-law (with exponent γ) adequately quantifies decline above kpk, 67 
along with standard goodness-of fit statistics, we examined regression residuals for systematic deviations 68 
by fitting a quadratic model. For example, if an exponential or linear decline was more appropriate than a 69 
power-law, the residuals would show significant concave downward curvature and be best fit by a quadratic 70 
regression model. In contrast, lack of systematic deviation would be indicated by a straight line with slope 71 
~ 0 being a better fit. 72 
 73 
Fig. S1 and Table S2 show the results of our meta-analyses. Although few studies cover sufficient range of 74 
size-ratios to capture a full unimodal response of search rate 𝑎𝑎𝑎𝑎 (Fig. S1), we find that a power-law (main 75 
text Equation (4)) is an acceptable model for decline in 𝑎𝑎𝑎𝑎 at high ratios, with the scaling exponent γ ranging 76 
between ~1 to 4. We did not find significant quadratic curvature deviations of the residuals in any of the 77 
responses. Ideally, these data should also allow comparison of empirical estimates of the rising part of the 78 
k function (exponent α in Fig. S1 and Table S2) with the exponents expected from main text Equation (3) 79 
and Equations (S13)–(S15) (the exponents associated with k in these equations). However, in most datasets, 80 
portions of the unimodal function above and below the peak are too poorly resoved to provide reliable 81 
estimates of the scaling exponents. Only three datasets allowed calculation of both α and γ exponents of the 82 
unimodal relationship between 𝑎𝑎𝑎𝑎 and k, while two datasets allowed neither. Nevertheless, we note that α 83 
tends to be steeper in 3D than 2D (Fig. S1 and Table S2), consistent with our theory (main text Equation 84 
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(3) and Equations (S13)–(S15)). Therefore, for our theoretical analysis we use a power function for A (with 85 
exponent γ; main text Equation (4)). We test the sensitivity of our results by varying γ (see Appendix 3), 86 
and by using an exponential instead of power-law form of A (Appendix 3).  87 

 88 
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 90 
Figure S1. Relationship between consumer mass-corrected product of search rate and attack success 91 
probability (𝑎𝑎𝑎𝑎) and size-ratio (k). Each panel represents an experiment with a single consumer feeding on 92 
a single resource species across a range of size ratios k. The lines are OLS fits. We do not use major axis 93 
(MA) regression because our objective is to obtain the most accurate (not necessarily the least biased) 94 
prediction of search rate scaling (Warton et al., 2006). Using MA regression yields steeper exponents, but 95 
does not alter our results qualitatively. Further details of statistical analyses and data sources are in Table 96 
S2. Datasets with insufficient data points on either side of maximum 𝑎𝑎𝑎𝑎 do not have fitted lines.  97 

98 
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Table S2. Scaling of consumer mass-corrected product of search rate and attack success probability (𝑎𝑎𝑎𝑎) 99 
with consumer-resource size-ratio (k) across laboratory studies (cf. Fig. S1). Each interaction has been 100 
classified by dimensionality (D) and foraging strategy (For: A – active-capture, G – grazing, S – sit-and 101 
wait). kpk denotes size-ratio at which 𝑎𝑎𝑎𝑎 peaks. The R2 and F-statistic p-value of the respective OLS 102 
regression analysis to estimate α (rise in 𝑎𝑎𝑎𝑎 up to kpk) and γ (fall in 𝑎𝑎𝑎𝑎 after kpk) in each dataset is shown 103 
along with sample sizes (n (α) and n (γ) columns, respectively). Exponents with p < 0.05 and R2 ≥ 0.5 are 104 
flagged by “*”.Values that could not be calculated due to lack of data are indicated by “-”. Note that none 105 
of the responses for which sufficient data were available to characterize the falling part showed significant 106 
curvature (indicated by “NS”).  107 
 108 
Consumer → Resource D kpk For n (α) α 

±95%CI R2 p-value n  
(γ) 

γ 
±95%CI R2 p-value Data source 

Carcinus maenas (small) 
→ Mytilus edulis 2 1.36 × 

10-02 G 4 4.25 
±29.5 0.16 NS 29 3.6* 

±0.81 0.75 <0.0001 Walne & Dean, 1972 

Carcinus maenas (large) 
→ Mytilus edulis 2 2.08 × 

10-02 G 8 0.42 
±1.98 0.04 NS 21 3.2* 

±1.4 0.51 <0.0001 Walne & Dean, 1972 

Macrolophus pygmaeus 
→ Myzus persicae 2 3.10 × 

10-02 G - - - - - - - - Fantinou, 2009 

Saduria entomon → 
Monoporeia affinis 2 2.26 × 

10-02 A 11 0.52* 
±0.3 0.63 0.004 - - - - Aljetlawi et al., 2004 

Sander vitreus → 
Chironomus sp. 2 3.58 × 

10-02 A 10 0.57* 
±0.1 0.94 <0.0001 - - - - Galarowicz & Wahl, 

2005 

Alosa pseudoharengus → 
Artemia sp. 3 4.62 × 

10-05 A - - - - 4 0.37 
±1.2 0.47 NS Miller et al., 1992 

Coregonus hoyi → 
Artemia sp. 3 2.68 × 

10-05 A - - - - 4 1.2 
±1.9 0.78 NS Miller et al., 1992 

Notonecta maculata 
(instar 1-2) → Daphnia 
magna 

3 5.12 × 
10-02 A 4 0.32 

±0.49 0.80 NS 5 0.69 
±0.77 0.73 NS Gergs & Ratte, 2009 

N. maculata (instar 3-5) → 
Daphnia magna 3 1.85 × 

10-02 A 11 0.62* 
±0.35 0.64 0.003 - - - - Gergs & Ratte, 2009 

Perca flavescens → 
Artemia sp. 3 3.51 × 

10-04 A - - - - - - - - Miller et al., 1992 

Philine aperta → 
Isochrysis galbana 3 9.75 × 

10-05 A 4 0.20 
±1.08 0.24 NS - - - - Hansen & Ockelmann, 

1991 

Ranatra dispar → Anisops 
deanei 3 4.05 × 

10-03 S - - - - 4 0.08 
±0.25 0.47 NS Bailey, 2010 

Salvelinus alpinus → 
Daphnia longispina 3 1.08 × 

10-04 A 11 0.97* 
±0.21 0.92 <0.0001 - - - - Jansen et al., 2003 

Sander vitreus → Daphnia 
sp. 3 1.63 × 

10-03 A 10 1.5* 
±0.61 0.80 <0.0001 - - - - Galarowicz & Wahl, 

2005 

Streptocephalus 
torvicornis → Anuraeopsis 
fissa 

3 1.02 × 
10-06 A 4 2.03 

±3.89 0.71 NS - - - - Dierckens et al., 1995 

Tortanus forcipatus → 
Oithona davisae 3 6.88 × 

10-02 A 4 0.62 
±0.65 0.89 0.05 - - - - Uye & Kayano 1994 

 109 
  110 
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Appendix 2: Theoretically feasible size-ratios for consumer-resource coexistence and population 111 
stability 112 

Here, to compare and contrast with the theoretically feasible size-ratios predicted by our model for 113 
consumer population energetics, we consider the feasibility of size-ratios from a population dynamical 114 
perspective. For this, we use a general Rosenzweig-Macarthur type model for changes in consumer-115 
resource biomass densities C (= mC xC) and R (= mR xR) respectively (Weitz and Levin, 2006; Dell et al., 116 
2013): 117 
  118 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑟𝑟𝑟𝑟 �1 −
𝑅𝑅
𝐾𝐾
� −

𝑎𝑎′𝐴𝐴𝑅𝑅
1 + 𝑎𝑎𝐴𝐴ℎ𝑅𝑅

𝐶𝐶

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝑧𝑧𝑧𝑧 + 𝑒𝑒
𝑎𝑎′𝐴𝐴𝑅𝑅

1 + 𝑎𝑎𝐴𝐴ℎ𝑅𝑅
𝐶𝐶

 (S1) 

 119 
Here, r is the resource’s intrinsic biomass production rate (1/time), z the consumer’s biomass loss rate 120 
(including mortality) (1/time), 𝑎𝑎′ is consumer-mass specific search rate (𝑎𝑎′ = 𝑎𝑎 𝑚𝑚𝐶𝐶⁄ , because Equations 121 
(S1) are in biomass units; cf. main text Equation (3)) and e is conversion efficiency of resource biomass 122 
into consumer biomass (a proportion). K is resource carrying capacity (mass × area–1 or volume–1) — the 123 
maximum biomass density achieved by the resource in the absence of consumers. That is, K equals resource 124 
mass mR multiplied by its carrying capacity in terms of number density. Equilibrium biomass densities (kg 125 
× m–2 or kg × m–3) for the consumer-resource system with Type II functional response (Equations (S1)) are 126 
 127 

𝑅𝑅� =
𝑧𝑧

𝑎𝑎′𝐴𝐴(𝑒𝑒 − 𝑧𝑧ℎ)

𝐶̂𝐶 =
𝑒𝑒𝑟𝑟(𝐾𝐾𝑎𝑎′𝐴𝐴(𝑒𝑒 − 𝑧𝑧ℎ) − 𝑧𝑧)
𝐾𝐾(𝑎𝑎′𝐴𝐴)2(𝑒𝑒 − 𝑧𝑧ℎ)2

 

(S5) 

 128 
Coexistence means that the consumer maintains positive equilibrium biomass (𝐶̂𝐶 > 0), which in turn 129 
implies 𝐾𝐾 > 𝑧𝑧/(𝑎𝑎′𝐴𝐴(𝑒𝑒 − 𝑧𝑧ℎ)). In other words, the resource growing to its carrying capacity 𝐾𝐾 =130 
𝑧𝑧/(𝑎𝑎′𝐴𝐴(𝑒𝑒 − 𝑧𝑧ℎ)) is necessarily only possible when the consumer has gone extinct (no coexistence). The 131 
biological insight from this inequality is that coexistence is only possible if resource carrying capacity is 132 
sufficiently large to sustain consumers even if they have high mortality, low search rate, low efficiency, or 133 
high handling times. Here again, as we did for the energetic model (see main text), we assume h = 0 (Type 134 
I f(R)) to obtain an exact solution, which simplifies the coexistence condition to K > z/𝑒𝑒𝑎𝑎′A.  135 
 136 
Now we can again substitute the scaling of the species interaction parameters (main text Equations (3), (4), 137 
(6)), along with scaling of the additional parameters r, z, and K. For the latter three, we use the well-138 
established relationships (Yodzis and Innes, 1992; Weitz and Levin, 2006; Pawar et al., 2012)  139 
 140 

𝑟𝑟 = 𝑟𝑟0𝑚𝑚𝑅𝑅
𝛽𝛽−1

 (S2) 

𝑧𝑧 = 𝐵𝐵0𝑚𝑚𝐶𝐶
𝛽𝛽−1

 

(S3) 
𝐾𝐾 = 𝑥𝑥0𝑚𝑚𝑅𝑅

1−𝛽𝛽𝑥𝑥

 

(S4) 
 141 
where the constants r0, B0, and x0 include effects of temperature (Brown et al 2005; Dell et al., 2014; Pawar 142 
et al., 2015). Of these, note that we assume K scales like resource biomass density does in main text 143 
Equation (9). This is independent of interaction dimensionality because K represents maximal biomass 144 
density that the resource can achieve in absence of consumers (so dimensionality should play no part in 145 
this) (Savage et al., 2004; Pawar et al., 2012). Also, following empirical evidence (Peters, 1986; Pawar et 146 
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al., 2012), baseline carrying capacity (x0) is assumed to be about two orders of magnitude higher in 3D than 147 
2D (Table S3). Note that although biomass density K is expressed in per-volume units in 3D and per-area 148 
units in 2D (Table S3), what matters is that a greater amount of resource biomass can be packed into a 3D 149 
space. Substituting all these scaling Equations ((main text Equations (3), (4), (6), and (S2)–(S4)) into this 150 
coexistence condition, keeping in mind that 𝑎𝑎 = 𝑎𝑎′ 𝑚𝑚𝐶𝐶⁄ , and rearranging so that mR lies on the left hand 151 
size of the inequality, gives 152 
 153 

𝑚𝑚𝑅𝑅 > 𝑚𝑚0 �𝑚𝑚𝐶𝐶
𝛽𝛽−𝑝𝑝𝑑𝑑(𝐷𝐷−1)−𝑝𝑝𝑣𝑣(1 + 𝑘𝑘𝛾𝛾)−1�

1
1+𝑝𝑝𝑑𝑑(𝐷𝐷−1)−𝛽𝛽 , (S6) 

where 𝑚𝑚0 = (𝐵𝐵0 𝑒𝑒𝑎𝑎0𝑥𝑥0⁄ )
1

1+𝑝𝑝𝑑𝑑(𝐷𝐷−1)−𝛽𝛽. Furthermore, substituting actual values for the exponents (Table S3), 154 
we get  155 
 156 

𝑚𝑚𝑅𝑅 > 𝑚𝑚0𝑚𝑚𝐶𝐶
0.64(1 + 𝑘𝑘γ)−2.22 in 2𝐷𝐷, and

𝑚𝑚𝑅𝑅 > 𝑚𝑚0𝑚𝑚𝐶𝐶
0.14(1 + 𝑘𝑘γ)−1.54 in 3𝐷𝐷,

 (S7) 

 157 
where m0 = (B0/𝑒𝑒a0 x0)2.22 in 2D and (B0/𝑒𝑒a0x0)1.54 in 3D. In Appendix 3, we show that the scaling of 158 
coexistence in Equation (S6) is qualitatively the same for Type II and III functional responses. The smaller 159 
mC and k exponents for 3D in Equation (S7) imply that size constraints weaken as dimensionality increases. 160 
Therefore, relative to 2D, a much wider range of resource sizes become feasible for larger 3D consumers 161 
(main text Fig. 2). Conversely, 3D foraging allows an increased range of consumer sizes on a resource of 162 
given size because for a given size-ratio, larger consumers enjoy a greater mass-specific search rate in 3D 163 
than in 2D (𝑎𝑎′ = 𝑎𝑎/𝑚𝑚𝐶𝐶 ∝ 𝑚𝑚𝐶𝐶

0.04in 3D but 𝑚𝑚𝐶𝐶
−0.34in 2D, from parameterized main text Equation (3)). 164 

Furthermore, within either 2D or 3D, feasible size-ratios for coexistence are predicted to be constrained by 165 
baseline biomass carrying capacity (K0) (main text Fig. 2). Numerical values for all scaling parameters of 166 
Equation (S6) are summarized in Table S3.  167 
 168 
Furthermore, dividing Equations (S5) by the respective body masses gives numerical abundances of 169 
consumer (𝑥𝑥�𝐶𝐶 = 𝐶̂𝐶/𝑚𝑚𝐶𝐶) and resource (𝑥𝑥�𝑅𝑅 = 𝑅𝑅�/𝑚𝑚𝑅𝑅). Substituting the scaling of parameters (Table S3) into 170 
these equations and again assuming h = 0 gives the abundance scaling within the feasible coexistence 171 
region: 172 
 173 

𝑥𝑥�𝑅𝑅 = 𝑅𝑅0𝑚𝑚𝐶𝐶
−0.91𝑘𝑘−1.2(1 + 𝑘𝑘𝛾𝛾) in 2𝐷𝐷, and

𝑥𝑥�𝑅𝑅 = 𝑅𝑅0𝑚𝑚𝐶𝐶
−1.31𝑘𝑘−1.4(1 + 𝑘𝑘𝛾𝛾) in 3𝐷𝐷

 (S8) 

 174 
and  175 
 176 

𝑥𝑥�𝐶𝐶 = 𝐶𝐶0𝑚𝑚𝐶𝐶
−0.91𝑘𝑘−0.45(1 + 𝑘𝑘𝛾𝛾) �𝑒𝑒𝑎𝑎0𝐾𝐾0 − 𝐵𝐵0𝑚𝑚𝐶𝐶

−0.16𝑘𝑘−0.45(1 + 𝑘𝑘𝛾𝛾)� in 2𝐷𝐷, and

𝑥𝑥�𝐶𝐶 = 𝐶𝐶0𝑚𝑚𝐶𝐶
−1.31𝑘𝑘−0.65(1 + 𝑘𝑘𝛾𝛾) �𝑒𝑒𝑎𝑎0𝐾𝐾0 − 𝐵𝐵0𝑚𝑚𝐶𝐶

−0.56𝑘𝑘−0.65(1 + 𝑘𝑘𝛾𝛾)� in 3𝐷𝐷
 (S9) 

 177 
where R0 = B0/𝑒𝑒a0 and 𝐶𝐶0 = 𝑟𝑟0 𝑒𝑒𝑎𝑎02𝑥𝑥0⁄ . Equations (S8) and (S9) predict qualitatively similar (negative) 178 
scaling of consumer and resource equilibrium abundances, which also hold for Type II functional responses 179 
(Fig. S2). Because resources are consumed most rapidly at intermediate size-ratios (along the k = 1 line in 180 
main text Fig. 2), for fixed consumer [resource] size, consumers [resources] reach highest [lowest] numbers 181 
at extreme size-ratios irrespective of dimensionality because of the unimodal size-ratio dependence of per-182 
capita consumption rate (main text Equation (5)). This is also obvious in Equations (S8) and (S9). The 183 
initial power-law decrease in abundance with size-ratio (negative exponents on k) is balanced and then 184 
reversed by inverse g(k) = 1+kγ at very high size-ratios (mR≫mC; main text Fig. 2).  185 
 186 
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Stability 187 
 188 
To study local asymptotic stability to small perturbations around these equilibrium abundances (Equations 189 
(S8)–(S9)), we calculate size scaling of the two eigenvalues of the system’s Jacobian matrix (Appendix 2). 190 
For this, we begin with the Jacobian matrix for the system: 191 
  192 

Ĵ =

⎣
⎢
⎢
⎡−

𝑟𝑟𝑟𝑟(𝑒𝑒 + ℎ(𝑧𝑧 − 𝑒𝑒𝐾𝐾𝐾𝐾′𝐴𝐴) + 𝐾𝐾𝐾𝐾ℎ2𝑎𝑎′𝐴𝐴)
𝑒𝑒𝐾𝐾𝐾𝐾′𝐴𝐴(𝑒𝑒 − 𝑧𝑧ℎ)

−
𝑧𝑧
𝑒𝑒

𝑟𝑟(𝑒𝑒 −
𝑧𝑧

𝐾𝐾𝐾𝐾′𝐴𝐴
− 𝑧𝑧ℎ) 0 ⎦

⎥
⎥
⎤
 (S10) 

 193 
Where 𝑎𝑎′ ≡ 𝑎𝑎/𝑚𝑚𝐶𝐶 as before. The two eigenvalues of  Ĵ are, 194 
 195 

λ(Ĵ)1,2 =
𝑟𝑟𝑟𝑟(𝑒𝑒ℎ𝐾𝐾𝑎𝑎′−ℎ2𝐾𝐾𝐾𝐾𝑎𝑎′−𝑒𝑒−ℎ𝑧𝑧)±�𝑟𝑟𝑟𝑟(𝑟𝑟𝑟𝑟(𝑒𝑒−𝑒𝑒ℎ𝐾𝐾𝑎𝑎′+ℎ𝑧𝑧(1+ℎ𝐾𝐾𝑎𝑎′))2−4𝑒𝑒𝐾𝐾(𝑒𝑒−ℎ𝑧𝑧)2𝑎𝑎(𝑒𝑒𝐾𝐾𝑎𝑎′−𝑧𝑧(1+ℎ𝐾𝐾𝑎𝑎′)))

2𝑒𝑒𝐾𝐾𝑎𝑎′(𝑒𝑒−ℎ𝑧𝑧)
  

(S11) 

 196 
These eigenvalues, which may consist of both real and imaginary (if the term under the square-root is 197 
negative) parts, determine behavior of the two populations following small perturbations around the 198 
equilibrium. Given Equation (S11), four scenarios are possible: 199 

(i) both eigenvalues are real and negative ⇒ after perturbation, populations converge on the equilibrium 200 
exponentially without cycles (Fixed point) 201 

(ii) both eigenvalues have imaginary and negative real parts ⇒ after perturbation, populations converge 202 
on the equilibrium with cycles (Transient cycles) 203 

(iii) both eigenvalues have conjugate imaginary and positive real parts ⇒ after perturbation, populations 204 
diverge from the equilibrium with cycles (Persistent cycles) 205 

(iv) One or both eigenvalues has a positive real part and neither has an imaginary part ⇒ equilibrium is 206 
unstable (Extinction) 207 

 208 
We can characterize these scenarios in terms of consumer-resource body size ratios by substituting the 209 
scaling of parameters (see main text) into Equation (S11). The results (main text Fig. 2) show that within 210 
feasible size combinations, a larger range of size-ratios lead to persistent cycles in 3D than in 2D. As h → 211 
0 (→Type I functional response) we get,  212 
 213 

λ(Ĵ)1,2 = −𝑟𝑟𝑟𝑟±�𝑟𝑟𝑟𝑟(𝑟𝑟𝑟𝑟−4𝑒𝑒𝐾𝐾𝑎𝑎′(𝑒𝑒𝐾𝐾𝑎𝑎′−𝑧𝑧))
2𝑒𝑒𝐾𝐾𝑎𝑎′

  (S12) 
 214 
Now, the real part of both eigenvalues can are always negative, and therefore the inner regions of unstable 215 
persistent cycles in the consumer-resource size plane (main text Fig. 2) are replaced by transient cycles.   216 
Thus, consistent with consumer-resource theory, as h→0 and the functional response becomes Type I, 217 
regions of persistent cycles are replaced by transient cycles (main text Fig. 2).   218 
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Appendix 3: Model robustness 219 
 220 
Here we consider the robustness of our theoretical results to variation in the scaling relationships used to 221 
parameterize the consumer-resource model. Ranges of numerical values for these scaling model parameters 222 
are summarized in Table S3. Overall, our results are qualitatively robust to variation in model predictions 223 
for these ranges of parameter values. 224 
 225 
Table S3. Numerical values for the parameters in the energetic feasibility (main text Equations (1)–(7)) 226 
and consumer-resource dynamics models (Equations (S1)). The upper limit of h0 is approximately the value 227 
obtained by Pawar et al. (2012) from a meta-analysis of empircal data on handling times. The lower and 228 
upper limits for βh are based on scaling exponents of resting and active metabolic rates, respectively. 229 
 230 

 231 
Effect of functional response type 232 
 233 
Here we show that our results for scaling of coexistence and abundance are robust even if we use Type II 234 
or Type III instead of Type I functional response. For this, instead of main text Equation (2), we use the 235 
generalized functional response (Vucic-Pestic et al., 2010), 𝑓𝑓(𝑅𝑅) = 𝑅𝑅𝑞𝑞+1 1 + ℎ𝑎𝑎𝑅𝑅𝑞𝑞+1⁄  and analyze the 236 
population dynamics model (Equations (S1)). This equation reduces to the Type II response when q = 0. 237 
Fig. (S2) shows that predicted coexistence regions with Type III (and therefore also II) change very little 238 
from Type I, the main difference being a minor reduction in coexistence regions, especially in 2D. In 239 
addition, regions of persistent cycles observed with Type II responses (main text Fig. 2) decrease when 240 
Type III responses are used (results not shown). For these results, we use q = 0.5, which is the approximate 241 
midpoint of the range reported by previous studies (Vucic-Pestic et al., 2010; Pawar et al., 2012). Increasing 242 
q will further decrease coexistence and cycling regions, while decreasing it to 0 (Type II f(R)) leads to the 243 
same coexistence region as for Type I (main text Fig. 2), but without persistent cycles. Thus, overall our 244 
main results about differences between 2D and 3D coexistence and population dynamics remain 245 
qualitatively the same, the main difference being that Type III responses slightly decrease feasible ranges 246 
of consumer-resource size combinations at small consumer sizes in 2D, and shrink regions of persistent 247 

Parameter Description Parameter  
values Units Source 

β Exponent for scaling of metabolic rate 0.75 – 0.8  
 

- Peters, 1986; 
Brown et al., 2004; Savage et 

al., 2004; Nagy 2005 

βx Exponent for scaling of numerical abundance 0.75 - Peters, 1986; 
Brown et al., 2004 

βh Exponent for scaling of handling time with body mass 0.75 – 1 - Pawar et al., 2012 

pv Exponent of velocity scaling with body mass 0.26 - Pawar et al., 2012 

pd Exponent of detection distance scaling 0.2 - Pawar et al., 2012 

γ  Exponent for scaling of attack success probability 1 – 4 - Pawar et al., 2012 

B0 Normalization constant for resting metabolic rate 
(consumer’s intrinsic biomass loss rate) 

1×10–6 – 
1×10–9 

 

- Peters, 1986; 
Brown et al., 2004;  Nagy, 

2005 

r0 Normalization constant for resource biomass production 
rate 

1.71×10–9

 
kg1–β × s–1 Brown et al., 2004; Savage et 

al., 2004 

x0 Normalization constant for resource abundance 
(energetic feasibility model) or carrying capacity 
(consumer-resource model) 

0.01 – 1 (2D), 
3 – 300 (3D) 

kgβ–1 × m–2 (2D), 
kg β–1 × m–3 (3D) Pawar et al., 2012 

a0 Normalization constant for search rate 10-3.08 (2D), 
10-1.77 (3D)

 

m2 × s–1 (2D), 
m3 × s–1 (3D) Pawar et al., 2012 

h0 Normalization constant for handling time 0 – 104 kgβ–1 × s Pawar et al., 2012 

e Conversion efficiency of resource to consumer biomass 0.3 – 0.75 - Peters, 1986;  Yodzis  & 
Innes, 1992; Lang et al., 2017 
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cycles in both 2D and 3D. Both effects are driven by the initial lag in consumption rate in Type III responses. 248 
The decrease in coexistence regions due to Type III is stronger in 2D because resource biomass densities 249 
decrease with size in 2D interactions, amplifying the effect of a lag in initial consumption rate for small 250 
consumers. 251 

 252 
 253 
Figure S2. Differences in coexistence (abundances of both consumer and resource > 0) across all possible 254 
size combinations for Type I or II (bounded by solid lines) vs. Type III functional response (bounded by 255 
dashed lines). For Type III responses, we use q = 0.5 based on previous work (Pawar et al., 2012). 256 
Interactions from seven communities have been overlaid (1627 2D interactions and 1302 3D interactions). 257 
All other parameter settings are as in the main text figures. 258 
 259 
Effect of foraging strategy 260 
 261 
The scaling of per-capita search rate (main text Equation (3), which is for grazing) varies with foraging 262 
strategy (Pawar et al., 2012). Specifically, for grazing (vR ≪ vC) (which we focus on in our main analyses 263 
and results) 264 
 265 

𝑎𝑎 = 𝑎𝑎0𝑚𝑚𝐶𝐶
𝑝𝑝𝑣𝑣+2𝑝𝑝𝑑𝑑(𝐷𝐷−1)𝑘𝑘𝑝𝑝𝑑𝑑(𝐷𝐷−1)

 (S13) 
 266 
(same as main text Equation 3), for active-capture (both vR & vC > 0) 267 
 268 

𝑎𝑎 = 𝑎𝑎0,𝐷𝐷𝑚𝑚𝐶𝐶
𝑝𝑝𝑣𝑣+2(𝐷𝐷−1)𝑝𝑝𝑑𝑑�1 + 𝑘𝑘2𝑝𝑝𝑣𝑣𝑘𝑘(𝐷𝐷−1)𝑝𝑝𝑑𝑑

 (S14) 
 269 
and for sit-and-wait foraging (vR ≫ vC) 270 

𝑎𝑎 = 𝑎𝑎0,𝐷𝐷𝑚𝑚𝐶𝐶
𝑝𝑝𝑣𝑣+2(𝐷𝐷−1)𝑝𝑝𝑑𝑑𝑘𝑘𝑝𝑝𝑣𝑣+(𝐷𝐷−1)𝑝𝑝𝑑𝑑

 (S15) 
 271 
with all parameters being same as those in main text Equation (3). Note that here the constant a0 includes a 272 
D in the subscript, indicating that it increases with dimensionality (Pawar et al., 2012). We drop this part 273 
of the subscript in the main text for notational simplicity. Using empirically validated values of pv ~ 0.26 274 
and pd ~ 0.20, Equations (S13)–(S15) predict that search rates should initially increase with k as a power-275 
law, with exponents ranging from 0.20 (for grazing) to 0.46 (sit and wait) in 2D and 0.4 (grazing) to 0.66 276 
(sit and wait) in 3D. There is very little overlap between these ranges, indicating that dimensionality is the 277 
main driver of variation in scaling, with foraging strategy having a secondary effect. Note that when the 278 
consumer is much larger than resource, the term under the square-root in Equation (S14) becomes very 279 
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small, and thus search rate in active-capture is well approximated by that of grazing (𝑎𝑎 =280 
𝑎𝑎0,𝐷𝐷𝑚𝑚𝐶𝐶

𝑝𝑝𝑣𝑣+2(𝐷𝐷−1)𝑝𝑝𝑑𝑑𝑘𝑘(𝐷𝐷−1)𝑝𝑝𝑑𝑑). Biologically, this means the consumer moves so much faster than resource 281 
that the velocity component of size-ratio scaling becomes insignificant. Because most available data are for 282 
grazers or active-capture consumers that are much larger than resources (Table S2 and Supplementary Data 283 
Table S4), we use the grazing model in all analyses in the paper.   284 

To confirm robustness of our results to foraging strategy, we recalculate the coexistence regions 285 
(main text Fig. 2, which is for grazing) using Equations (S13)–(S15). The results are shown in Fig. S3a & 286 
b. Coexistence regions for active-capture (dotted lines) are almost identical to those for grazing (black 287 
lines), while those for sit-and-wait foraging are somewhat more restricted. However, our main results about 288 
the scaling of abundance (result not shown), location of population cycles on the size combination plane 289 
(result not shown), and differences between 2D and 3D regions (main text Fig. 2) remain qualitatively the 290 
same. 291 
 292 

 293 
 294 
Figure S3. Differences in coexistence for grazing (within thick solid lines, same as regions in main text 295 
Fig. 2), active capture (Equation (S14); within dotted lines), and sit-and-wait foraging strategies (Equation 296 
(S15); within dashed lines). All parameter settings same as the ones used for main text Fig. 2. 297 
 298 
 299 
Effect of variation in the attack success function 300 
 301 
We now examine the effect of variation in the steepness of the power-law decline of attack success (A), 302 
which is governed by the exponent γ. To this end, we recalculate the coexistence regions with the 303 
approximate maximum and minimum values for γ determined from our empirical analyses (Fig. S1 and 304 
Table S2). The results are shown in Fig. S4a&b. As expected, decreasing strength of the power-law decline 305 
in attack success (γ = 1) weakens constraints on small consumer-large resource size combinations (where 306 
k≫1; Fig. S4), widening the feasible coexistence regions. Conversely, increasing strength of the decline in 307 
attack success (γ = 4) strengthens constraints on size-combinations where k ≫ 1 and thus narrows feasible 308 
coexistence regions (Fig. S4). We also model an exponential decline (i.e., 𝑔𝑔(𝑘𝑘) = 𝑒𝑒−γ𝑘𝑘 (Aljetlawi et al., 309 
2004; Weitz and Levin, 2006; Brose et al., 2008) in attack success, which yields qualitatively similar results 310 
to the power-law (Fig. S4c&d). Thus, overall our main results about the difference between 2D and 3D 311 
coexistence and population dynamics remain qualitatively the same. We note that examining the effect of 312 
variation in γ is particularly important because it also incorporates the constraints of gape-limitation. 313 
 314 
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 315 
 316 
Figure S4. Sensitivity of coexistence to variation in scaling exponent γ (main text Equation (4)) (upper 317 
panel), and exponential instead of power-law decline in attack success probability (lower panel). In both 318 
sets of figures, results reported in the main text are bounded by thick black lines, while dashed lines show 319 
changes in the upper bounds due to variation in γ. All other parameter settings same as for main text Fig. 320 
2. 321 
 322 
Effect of monotonic versus unimodal attack success functions 323 
 324 
We also compare two different models governing the shape of the attack success probability (ASP) 325 
function. Despite their unique mathematical forms, both ASP models generate numerically similar outputs 326 
for consumption rate. In the main analysis, we consider a monotonically decreasing function for ASP (main 327 
text Equation (4)), which still yields a unimodal consumption rate because search rate itself increases with 328 
respect to size ratio (main text Equation (3)). However, according to the results of Brose et al. (2008) and 329 
Vucic-Pestic et al., (2010), when resources are small enough that a consumer either cannot detect them or 330 
chooses to consume other resources that are easier to detect, ASP itself should be unimodal. Therefore, here 331 
we consider a Gaussian-like ASP function that includes a single optimal size ratio and declines in ASP for 332 
both small and large size ratios  333 

𝐴̂𝐴 = exp �−
�𝑘𝑘 − 𝑘𝑘pk�

2

2𝜎𝜎2 � (S16) 

where 𝑘𝑘pk is the mean (optimal) size-ratio, and 𝜎𝜎2 is the variance in ASP across size ratios. 334 
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To compare these two ASP models and study the sole effect of size-ratio on consumption rate, first we 335 
simplify main text Equation (5) by setting consumer mass to a constant (𝑚𝑚𝐶𝐶 = 1) 336 

𝑐𝑐 =
𝐴𝐴𝐴𝐴𝐴𝐴 ⋅ 𝑎𝑎0𝑘𝑘𝑝𝑝𝑑𝑑(𝐷𝐷−1)+1𝑥𝑥𝑅𝑅

1 + 𝑎𝑎0𝑘𝑘𝑝𝑝𝑑𝑑(𝐷𝐷−1)+1 ⋅ 𝐴𝐴𝐴𝐴𝐴𝐴 ⋅ ℎ0
 (S17) 

 337 
where 𝐴𝐴𝑆𝑆𝑃𝑃 can equal either 𝐴𝐴 (main text Equation (4)) or 𝐴̂𝐴 as defined above. If we only consider the 2D 338 
case, we can set 𝑝𝑝𝑑𝑑 = 0.2 (Table S3) and 𝐷𝐷 = 2 and consumption rate can be rewritten as 339 

𝑐𝑐 =
𝑥𝑥𝑅𝑅

1
𝑎𝑎0 𝐴𝐴𝐴𝐴𝐴𝐴⋅𝑘𝑘1.2

+ ℎ0
 (S18) 

 340 
Here we can see that 𝑥𝑥𝑅𝑅 ,𝑎𝑎0, and ℎ0 are all constants. Hence, we can use the product of ASP and k1.2 to 341 
examine the behavior of consumption rate (Fig. S5). Firstly, for = 1

1+𝑘𝑘𝛾𝛾
 , let 𝑓𝑓(𝑘𝑘) =  𝐴𝐴 ⋅ 𝑘𝑘1.2 = 𝑘𝑘1.2

1+𝑘𝑘2
  (𝛾𝛾 =342 

2). Then 𝑓𝑓′ = 𝑘𝑘0.2−𝑘𝑘2.2

(1+𝑘𝑘2)2 , so for 𝑘𝑘 ∈  [0,∞], there is only one maximum at 𝑘𝑘 = 1 (Fig. S5b). Then by 343 

definition, 𝑓𝑓(𝑘𝑘) is a unimodal function for 𝑘𝑘 ∈  [0,∞]. Similarly, for 𝐴𝐴𝐴𝐴𝐴𝐴 =  𝐴̂𝐴 = exp �− �𝑘𝑘−𝑘𝑘𝑝𝑝𝑝𝑝�
2

2𝜎𝜎2
�, let 344 

𝑔𝑔(𝑘𝑘) =  𝐴̂𝐴 ⋅ 𝑘𝑘1.2 = 𝑘𝑘1.2 exp �− (𝑘𝑘−1)2

2
�  (𝑘𝑘𝑝𝑝𝑝𝑝 = 1, & 𝜎𝜎2 = 1). Then 𝑔𝑔′ =  exp �− �𝑘𝑘−𝑘𝑘𝑝𝑝𝑝𝑝�

2

2𝜎𝜎2
�  (1.2𝑘𝑘0.2 −345 

𝑘𝑘2.2 + 𝑘𝑘1.2), so for 𝑘𝑘 ∈  [0,∞], there is only one maximum at 𝑘𝑘 = 1+√5.8
2

≈ 1.7 (Fig. S5b). Hence by 346 
definition 𝑔𝑔(𝑘𝑘) is also a unimodal function.  347 
 348 
Next, we compare both ASP models in the limits of very small (k ≪ 1) and large (k ≫ 1 + 𝜎𝜎) size-ratios. 349 
Here, we assume an intermediate value for the optimal size-ratio, then we further assume that the variance 350 
in ASP is significantly larger than the optimal size-ratio. More specifically, for 𝑘𝑘𝑝𝑝𝑝𝑝 = 1, 𝛾𝛾 = 2,𝜎𝜎 ≫351 
1,𝑎𝑎𝑎𝑎𝑎𝑎 𝑘𝑘 ≪ 1 352 

𝐴𝐴𝐴𝐴𝐴𝐴 ⋅ 𝑘𝑘1.2 =  �
𝑘𝑘1.2(1 + 𝑘𝑘2)−1 ~ (1 − 𝑘𝑘2)𝑘𝑘1.2 = 𝑘𝑘1.2 − 𝑘𝑘3.2 ~ 𝑘𝑘1.2

𝑘𝑘1.2 exp �−
(𝑘𝑘 − 1)2

𝜎𝜎2
�  ~ �1 −

(𝑘𝑘 − 1)2

𝜎𝜎2
� 𝑘𝑘1.2 = 𝑘𝑘1.2 �1 −

1
𝜎𝜎2
� +

2𝑘𝑘2.2

𝜎𝜎2
−
𝑘𝑘3.2

𝜎𝜎2
 ~ 𝑘𝑘1.2 

   (S19) 

 353 
If we relax the idea of optimum size-ratio for attack success probability, we can see that large 𝜎𝜎 gives the 354 
same asymptotic form for both ASP models and for 𝑘𝑘 ≫ 1 + 𝜎𝜎 355 
 356 

𝐴𝐴𝐴𝐴𝐴𝐴 ⋅ 𝑘𝑘1.2 =  �
𝑘𝑘1.2(1 + 𝑘𝑘2)−1 = 𝑘𝑘−0.8  ⟶ 0

𝑘𝑘1.2 exp�−
(𝑘𝑘 − 1)2

𝜎𝜎2 � ⟶ 0
 

 

(S20) 

 357 
Notice that although the two models approach 0 at different rates, they both approach 0 asymptotically. 358 
Finally, for intermediate values of 𝐴𝐴𝐴𝐴𝐴𝐴 ⋅ 𝑘𝑘1.2, the term   1

𝑎𝑎0𝐴𝐴𝐴𝐴𝐴𝐴⋅𝑘𝑘1.2 will be relatively small compared to large 359 
ℎ0 values (Equation (S18)) Therefore, it is sufficient to say that even though the two ASP models above 360 
are quantitatively different across all of function space, the consumption rate behaves very similarly 361 
qualitatively under both models in these three limits. Furthermore, monotonic and Gaussian-like ASP 362 
models also produce only minor differences in predicted coexistence regions (Fig. S6). 363 
 364 
Taken together, our analysis shows that both ASP models exhibit a qualitatively similar, unimodal 365 
relationship between size ratio and consumption rate. Furthermore, both ASP models show asymptotically 366 
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similar behavior for small (k ≪ 1) and large (k ≫ 1 + 𝜎𝜎) size ratios. For the intermediate size-ratios, 367 
consumption rate is similar in both models for sufficiently large values of handling times (ℎ0).  368 
 369 

 370 
Figure S5. Comparing the influence of monotonic and Gaussian ASP models on consumption rate. (a) ASP 371 
as a function of size-ratio (k) for both models. (b) The key element of consumption rate (ASP × k1.2) across 372 
size-ratios. 373 
 374 
 375 

 376 
Figure S6. Comparing the influence of monotonic and Gaussian ASP models on consumer-resource 377 
coexistence regions in 2D (a) and 3D (b). 378 
 379 
 380 
Effect of geometric mean resource size on size and size-ratio distributions 381 
 382 
In order to account for non-independent size-ratios, we re-analyzed the empirical community data for 383 
differences between 2D and 3D size-ratios after collapsing all the links of a single consumer to a single size 384 
ratio by taking the geometric average of the sizes of all its resources. By comparing this analysis (Table S4) 385 
with the main analysis (main text Table 1), we see that the the main conclusions about differences in the 386 
central tendencies of size-ratio distributions in 2D versus 3D remain qualitatively unchanged. 387 
 388 
 389 
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Table S4. Differences between 2D and 3D size-ratio distributions using the geometric mean of all resource 390 
sizes of each consumer. The Median log10(Size-ratio) column shows observed medians of log10 transformed 391 
size-ratios, and their observed and predicted (in parentheses) difference in medians (3D–2D). All observed 392 
differences are significantly different from 0 (p < 0.05; flagged with an asterisk) based upon a 393 
randomization test (see main text). Note that although median 2D and 3D size-ratios are significantly 394 
different in most communites, median 2D and 3D consumer and resource sizes are not (p > 0.05; Wilcoxon–395 
Mann–Whitney test with shared taxa removed). The 2D / 3D overlap column shows proportion of 396 
consumers in each community feeding on both 2D and 3D resources (Jaccard index) (Con), and proportion 397 
of resources exploited by both 2D and 3D consumers (Res). If such an overlap exists, the total number of 398 
taxa (Taxa-All) within a community will be smaller than the sum of 2D and 3D taxa. 399 
 400 

Community 

Median 
log10(Size-ratio) 

Median 
log10(Size) Taxa Interactions 2D / 3D 

overlap 

2D 3D 3D–
2D 2D 3D All 2D 3D All 2D 3D Con Res 

All 
communities 

-0.23 -3.57 -3.34* 
(-2.28) 

-4.79 -4.05 785 539 339 814 500 314 0.09 0.59 

Eastern 
Weddell Sea 

-0.85 -3.92 -3.07* 
(-2.03) 

-2.78 -2.51 276 82 234 286 70 216 0.11 0.58 

Estero de 
Punta Banda 

-2.88 -4.48 -1.60* 
(-1.00) 

-2.48 -2.73 105 97 41 102 69 33 0.34 0.24 

Grand 
Cariçaie 
Marsh 

-0.23 -1.18 -0.95 
(-1.20) 

-5.55 -5.44 75 54 24 52 36 16 0.00 0.13 

Scotch Broom -0.20 -0.91 -0.71 
(-1.02) 

-5.44 -5.28 159 156 6 149 146 3 0.00 0.30 

Skipwith Pond -0.76 -2.92 -2.16* 
(-0.39) 

-4.69 -4.55 34 31 19 32 18 14 0.78 0.13 

Broadstone 
Stream 

-0.98 – – -6.71 – 16 16 0 9 9 0 – – 

Gearagh 
Woodland 

-0.18 – – -5.56 – 113 113 0 99 99 0 – – 

UK Grasslands 0.37 – – -5.40 – 61 61 0 53 53 0 – – 
Tuesday Lake – -3.07 – – -10.9 47 0 47 32 0 32 – – 

 401 
 402 
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