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Additional methods – Detailed description of environmental covariates 
 
A key aspect of all species distribution models is the selection and preparation of environmental 
predictors that may influence the distribution of the species in question. Such variables typically 
include both biotic and abiotic layers such as land cover type, climatic variables, soil type, and 
topographic variables. We identified a set of 25 variables of potential ecological importance to 
milkweeds and/or monarch butterflies in the western U.S. From these, for each species, we 
selected a smaller subset of variables that were not correlated with each other, and used these in 
the final habitat suitability models (Steele et al., 2016). 
 
Little has been published concerning environmental factors that influence the distribution of 
milkweeds, so most variables were selected based on expert ecological knowledge and data 
availability. We favored proximal variables (e.g., minimum temperature of the coldest month) 
rather than distal variables (e.g., elevation) that affect organisms less directly (Merow et al., 
2013). The final set of candidate variables is provided in Table 2 and is available upon request 
from the Xerces Society (monarchs@xerces.org). A few variables were more complex to 
calculate or require explanation as to their potential ecological significance, and these are 
described further here. 
 
Climate data (PRISM) 
Annual precipitation, maximum temperature of warmest month, mean annual temperature, mean 
temperature of warmest month, mean temperature of wettest month, minimum temperature of the 
coldest month, precipitation of coldest season, precipitation of the warmest season, temperature 
range were downloaded from the PRISM climate website 
(http://www.prism.oregonstate.edu/normals/). The coldest quarter was December through 
February and the warmest quarter was June through August. July was the warmest month and 
December was the coldest month. 
 
Climate data (WORLDCLIM) 
Precipitation seasonality and temperature seasonality were downloaded from the WORLDCLIM website 
(http://www.worldclim.org/current) as version 1.4. 



 
Climate data (WNA) 
Number of warming degree days was downloaded from the Climate WNS (Western North 
America) website (https://sites.ualberta.ca/~ahamann/data/climatewna.html). 
 

Actual evapotranspiration 
Stephenson (1998) defined actual evapotranspiration as “evaporative water loss from a site 
covered by a hypothetical standard crop, given the prevailing water availability”. This definition 
can be thought of as the potential for plant productivity given the simultaneous availability of 
both water and energy. The AET layer used in this study was developed by Dobrowski et al. 
(2013) and was downloaded from the AdaptWest website. 
 
Mean climatic water deficit 
Mean climatic water deficit represents the unmet atmospheric potential for evapotranspiration 
and can be used as a proxy for drought (Dobrowski et al., 2013). Stevens and Frey (2010) found 
that the Palmer Drought Severity Index is a major constraint on late-season monarch butterfly 
breeding distribution. Our use of mean climatic water deficit represents the hypothesis that 
aridity may be a major constraint on the geographic distribution of monarchs or milkweeds. 
CWD was downloaded from the AdaptWest website. 
 
Number of arming degree days 
Warming degree-days is a metric of heat accumulation through time that is often used in 
phenology analyses. Use of this metric was inspired by Stevens and Frey (2010), who included a 
map layer based on the minimum degree day accumulation necessary for monarch butterfly 
larval development for the last summer generation (August-September) to determine which areas 
would reliably produce the adults that migrate to the overwintering sites. 
 
Precipitation seasonality 
Precipitation seasonality is one of the original bioclimatic variables defined as used in Nix and 
Busby (1986) and Hijmans et al. (2005) and is defined as the coefficient of variation of monthly 
precipitation.  
 
Temperature seasonality 
Also an original bioclimatic variable, temperature seasonality is defined as the standard deviation 
of monthly temperature. 
 
Soil variables 
Percent clay, percent sand, percent silt, pH, and soil bulk density were included as candidate 
covariates in the models. We used the POLARIS soil dataset (Chaney et al., 2016) which is a 
gridded soil product that is derived from models based upon USDA SSURGO soil data. The 
SSURGO (Soil Survey Geographic Database) data product contains large gaps in the western 
U.S. making it unsuitable for regional modeling. In contrast, the STATSGO dataset 
(State Soil Geographic Database) is available across all of the western U.S. states but has a very 
large minimum mapping unit. Our use of POLARIS as the soil dataset is a change from Steele et 
al. (2016) who used STATSGO in their modeling effort. 
 



Compound Topographic Index 
The Compound Topographic Index, sometimes also referred to as the Topographic Wetness 
Index, is a measure of relative soil moisture potential based upon the upslope drainage area and 
slope (Beven and Kirkby, 1979) and is calculated as ln(upslope area / tan (slope)). We calculated 
it using scripts from The Nature Conservancy (Evans et al., 2014) and a 90 m digital elevation 
model. In arid regions of the west, A. speciosa has been thought to be generally limited to 
relatively moist areas such as riparian areas or ditches. 
 
Distance to water 
Like the Compound Topographic Index, distance to water was included because of the observed 
association of A. speciosa and relatively moist areas. It was calculated from the medium 
resolution National Hydrography Dataset (U.S. Geological Survey 2015) because this resolution 
is more consistent across the west than the high resolution National Hydrography Dataset and 
because the medium resolution data was adequate to our 270 m analytical scale. The current 
modeling effort differed from Steele et al. (2016) in that we considered distance to both perennial 
water and distance to intermittent water separately. Both datasets were constructed from the 
USGS National Hydrography Dataset stream data with perennial being defined using the FCode 
46006. For water bodies, intermittent was defined using 39001 and 36100. Distance to perennial 
water was the distance to the nearest source of perennial water, either stream or polygonal water 
body. Distance to intermittent water was similarly constructed. 
 
Reclassified LANDFIRE Existing Vegetation Type Layer (i.e. Land Cover) 
We simplified the categorical LANDFIRE layer depicting Existing Vegetation Type 
(LANDFIRE 2013) by cross walking it to fewer, lumped classes deemed to be of likely 
ecological significance for milkweeds and monarch butterflies. Supplementary Table 3 shows 
which land cover types were grouped together. 
 
Milkweed models as covariates for the monarch butterfly breeding model 
We used our final, calibrated milkweed habitat suitability models as inputs to the model of 
monarch butterfly breeding habitat suitability, along with the environmental variables listed in 
Table 2. Milkweed presence is a critical variable in monarch butterfly breeding habitat 
suitability, and the maps that we produced are the best available west-wide estimate of milkweed 
distribution. 
 
Resolution of environmental covariates 
The native resolution of the candidate environmental rasters varied from 30 m pixels to 1 km 
pixels. To use MaxEnt, it was necessary to aggregate or downsample all layers until they had the 
same grain size. Merow et al. (2013) recommend that resolutions should be chosen that provide 
data from proximal rather than distal variables. In our case, we wanted to balance several factors: 
1) the ecological scale of processes that determine suitability for these species, 2) the spatial 
accuracy of our species presence locations, 3) the native resolution of environmental variables, 
and 4) computational constraints (finer-grained rasters greatly increase processing time). We 
conducted a set of initial experiments using three different resolutions: 90 m, 270 m, and 900 m, 
and ultimately found that 270 m provided the best compromise between the factors. All data sets 
were downloaded and projected into the same geographic coordinate system. To attain a standard 
resolution, variables with a native resolution that was coarser than 270 m were downsampled 



with the ArcMap Resample tool using the nearest neighbor setting, to avoid interpolation and 
false precision. Continuous rasters with a native resolution of 30 m or 90 m were aggregated to 
270 m pixels using the mean value. The reclassified LANDCOVER layer was aggregated 270 m 
resolution using the majority option. Once all the layers were aggregated or downsampled to 270 
m, we used ArcMap to snap them together and clip them to the same extent. 
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Additional results – From background selection, model parameterization, variable 
reduction, and model validation steps 

 
Based upon the recommendations of Anderson and Gonzalez (2011) we chose to perform 
species-specific optimization of a number of parameters including background area, 
regularization, and feature type. Background area is important in a presence-only modeling 
framework like Maxent because presences are contrasted with random background points and 
changing the size of the background can change the outcome of the model in sometimes dramatic 
ways (Anderson and Raza, 2010; Merow et al., 2013). Following the approaches of VanDerWal 
et al. (2009) we generated models at varying buffer sizes and then following Iturbide et al. 
(2015) sought to determine a saturation threshold using a Michaelis-Menten function that 
simultaneously optimizes both model fit while minimizing the background extent. In our study, 
species tended to have optimal background areas that varied from 270 to 300 km buffer sizes 
(Supplementary Table 1). At small buffer sizes (e.g. 10 to 100 km), models tended to have 
suboptimal performance. At larger buffer sizes models performed increasingly well, but the 
increase in improvement for each subsequently diminished. We did not find a true plateau in 
AUC with increasing buffer size, which we attribute to using a randomly-withheld validation 
dataset. Hence we used the 95% confidence interval of the saturation level to determine our 
optimal buffer. 
 
After determining an optimal background size we tuned our Maxent models assessing five 
different feature types (linear, linear+quadratic, linear+quadratic+product, 
linear+quadratic+product+threshold, hinge) and five different levels of regularization 
(smoothing) in a factorial manner resulting in twenty-five models per species (Anderson et al., 
2000; Merow et al., 2013; Radosavljevic et al., 2014). Models were assessed using validation 
AUC, AUCdiff (training AUC – validation AUC), and a new metric that combines Validation 
AUC and AUCdiff introduced here called penalized AUC or pAUC. pAUC is defined as 
(validation AUC - (training AUC – validation AUC)). pAUC is based on the assumption that 
model overfit (as measured by AUCdiff) is equal in proportion to model fit. Hence a difference 
in pAUC between two models can either be driven by higher overfit or lower model fit. In 
contrast to approaches such as Akaike’s Information Criterion and Bayesian Information 
Criterion there is no parameter for sample size. 
 
Our results found that the following milkweeds had the best models A. asperula, A. subulata, A. 
eriocarpa, A. californica, and A. speciosa (Supplementary Figure 1). The monarch model 
tended to rank in the middle with decent fit and minimal overfit. On the other end of the 
spectrum, species such as A. cryptoceras, A. incarnata, A. erosa, and A. viridiflora had the 
poorest models in terms of fit and overfit. The use of pAUC further separated the better 
milkweed models, which tended to be built upon a greater number of training points, from the 
poorer performing milkweed models, which tended to have few training points, because the 
poorer performing models often tended to be quite overfit. When comparing best models, models 
that used validation AUC differed dramatically from those chosen using pAUC. When using 
pAUC as the criterion for selecting a model, the best model varied among a range of feature 
types and regularization parameters (Supplementary Table 4). In contrast, had validation AUC 
been used to select models then the outcome would have been very different with all models 
having a regularization of either 1 or 2 and all but two models having a regularization value of 1. 



Our findings are in congruence with the many authors who have called attention to the tendency 
for Maxent to produce overfit models and have suggested evaluating models in a fashion that 
incorporates penalties for overfitting (Warren and Seifert, 2011; Merow et al., 2013; 
Shcheglovitova and Anderson, 2013). 
 
Our final step in the model building process was to reduce the number of parameters in order to 
aid in model interpretation. We employed an iterative approach in which variables were removed 
if they contributed less than 3% as measured by the Maxent permutation importance of if they 
had a Pearson’s correlation greater than 0.7 with another higher ranking variable. We initially 
built a model using all variables and then re-built models after removing variables that met the 
above criteria. We repeated this process but used 10% permutation importance as the final cutoff 
to ensure highly interpretable and parsimonious models. Typically, it took between one and five 
iterations to get to a final model (Supplementary Table 5). 

Model overfit as measured by AUCdiff was highest for A. cryptoceras, A. incarnata, A. 
tuberosa, and A. asperula, all of which had AUCdiff greater than 0.05. AUCdiff was strongly 
correlated with sample size. pAUC, which is introduced in this paper, represents a novel method 
for combining validation AUC and AUCdiff into a single measure. Although pAUC is 
functionally related to both validation AUC and AUCdiff, when the models were ranked by 
validation AUC and pAUC there were important differences. pAUC ranked A. incarnata, A. 
cryptoceras, A. tuberosa, A. cordifolia, and A. asperula lower than they were ranked based on 
validation AUC. These were all models with small sample sizes suggesting that pAUC, by 
incorporating AUCdiff, accounts functionally for sample size without explicitly incorporating a 
sample size penalty in the way that the Akaike or Bayesian Information Criterion would 
(Burnham and Anderson, 2003). 
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Supplementary Table 1: Sources of the occurrence data used in the study. 

Source             Count 
Southwest Monarch Study 5678 
Arizona State University, SEINet 5515 
United States Geological Service; BISON 4897 
Xerces Society 4732 
California Consortium 3283 
U.S. Fish and Wildlife Service 3114 
University of California, Davis 1951 
College of Western Idaho 1398 
iNaturalist 1341 
Journey North 1318 
Global Biodiversity Information Facility 937 
University of California, Berkley 739 
CalFlora 617 
Washington Department of Fish and Wildlife 590 
Idaho Department of Fish and Game 537 
Oregon State University 488 
National Phenology Network 415 
U.S. Forest Service 410 
Boise Parks & Recreation 314 
Monarch Larva Monitoring Project 304 
U.S. National Park Service 293 
PNW Consortium 265 
USDA PLANTS Database 257 
private citizens 192 
Flickr 185 
University of Washington 162 
California State University, Chico 154 
Wyoming Biodiversity Citizen Science Initiative 78 
Utah State University 76 
Iowa State University, Department of Entomology 58 
Bureau of Land Management 44 
Western Monarch listserv 44 
Friends of Red Rock Canyon 41 
University of British Columbia 29 
U.S. Navy 29 
California Polytechnic State University 26 
University of Montana 19 
Humble Roots Nursery 17 
University of Arizona Herbarium 16 



University of Alabama 12 
City of Eugene Parks and Open Space 10 
University of Alberta Museums 10 
University of Nevada Herbarium 8 
Rombough Biological 7 
U.S. Bureau of Land Management 7 
Missouri Botanical Garden 6 
State of Oregon 6 
Washington Butterfly Association 5 
Natural Resources Conservation Service 4 
University of Connecticut 3 
University of Kansas Biodiversity Institute 2 
DPLEX listserv 2 
The Nature Conservancy 1 
 
  



Supplementary Table 2: Model name, number of records prior to applying geographic thinning, 
number of records after applying geographic thinning, and the ratio of pre to post-thinning 
records. In addition to the thirteen milkweeds that were modeled there were 44 additional 
milkweed species in the database that were not included in the model due to small samples sizes. 
Model Pre-thinning records Post-thinning records Ratio 
Danaus plexippus - all records 8427 732 11.5 
Danaus plexippus - adult records 5236 924 5.7 
Danaus plexippus - breeding records 1498 635 2.4 
Danaus plexippus - breeding records 
without Ascelpias curassavica  n/a 586  

Ascelpias speciosa 9256 1219 7.6 
Ascelpias fascicularis 3260 226 14.4 
Ascelpias subulata 609 47 13.0 
Ascelpias eriocarpa 838 42 20.0 
Ascelpias californica 637 40 15.9 
Ascelpias asperula 1511 39 38.7 
Ascelpias tuberosa 695 37 18.8 
Ascelpias viridiflora 246 35 7.0 
Ascelpias erosa 532 34 15.6 
Ascelpias subverticillata 1448 33 43.9 
Ascelpias cordifolia 758 30 25.3 
Ascelpias cryptoceras 640 24 26.7 
Ascelpias incarnata 266 21 12.7 
Species not modeled    
Asclepias involucrata 410   
Asclepias linaria 386   
Asclepias latifolia 378   
Asclepias albicans 373   
Asclepias nyctaginifolia 294   
Asclepias incarnata 266   
Asclepias viridiflora 246   
Asclepias pumila 223   
Asclepias engelmanniana 212   
Asclepias curassavica 196   
Asclepias vestita 175   
Asclepias brachystephana 151   
Asclepias macrosperma 148   
Asclepias labriformis 136   
Asclepias solanoana 136   
Asclepias nummularia 125   
Asclepias macrotis 124   
Asclepias hallii 120   
Asclepias uncialis 111   



Asclepias hypoleuca 95   
Asclepias elata 85   
Asclepias arenaria 83   
Asclepias lemmonii 81   
Asclepias verticillata 71   
Asclepias rusbyi 70   
Asclepias michauxii 65   
Asclepias oenotheroides 50   
Asclepias quinquedentata 43   
Asclepias glaucescens 42   
Asclepias stenophylla 28   
Asclepias welshii 24   
Asclepias eastwoodiana 21   
Asclepias syriaca 18   
Asclepias sanjuanensis 17   
Asclepias cutleri 12   
Asclepias sperryi 10   
Asclepias linearis 2   
Asclepias ovalifolia 2   
Asclepias emoryi 1   
Asclepias lanceolata 1   
Asclepias purpurascens 1   
Asclepias scaposa 1   
Asclepias sullivantii 1   
Asclepias viridis 1   
 
  



Supplementary Table 3: Landfire land cover classes as reclassified into forty-six cover types 
for this study. Value refers to the value field in the Landfire dataset. 

Value Lumped Class Name Lumped ID Value Lumped Class Name Lumped ID 
3969 Agricultural-Aquaculture 1 3184 Exotic Herbaceous 17 
3989 Agricultural-Aquaculture 1 3182 Exotic Herbaceous-Upland 18 
3968 Agricultural-Graminoid 2 3183 Exotic Herbaceous-Upland 18 
3978 Agricultural-Graminoid 2 3181 Exotic Herbaceous-Upland 18 
3988 Agricultural-Graminoid 2 3259 Exotic Tree-Shrub 19 
3966 Agricultural-Graminoid 2 3180 Exotic Tree-Shrub 19 
3986 Agricultural-Graminoid 2 3134 Grassland 20 
3967 Agricultural-Graminoid 2 3142 Grassland 20 
3977 Agricultural-Graminoid 2 3130 Grassland 20 
3987 Agricultural-Graminoid 2 3135 Grassland 20 
3961 Agricultural-high structure 3 3147 Grassland 20 
3981 Agricultural-high structure 3 3503 Grassland 20 
3962 Agricultural-high structure 3 3133 Grassland 20 
3982 Agricultural-high structure 3 3256 Grassland 20 
3960 Agricultural-high structure 3 3141 Grassland 20 
3980 Agricultural-high structure 3 3132 Grassland 20 
3965 Agricultural-Row Crop 4 3148 Grassland 20 
3975 Agricultural-Row Crop 4 3149 Grassland 20 
3985 Agricultural-Row Crop 4 3150 Grassland 20 
3964 Agricultural-Row Crop 4 3195 Grassland 20 
3984 Agricultural-Row Crop 4 3143 Grassland-Alpine 21 
3963 Agricultural-Row Crop 4 3136 Grassland-Alpine 21 
3983 Agricultural-Row Crop 4 3144 Grassland-Alpine 21 
3294 Barren 5 3171 Grassland-Alpine 21 
3260 Deciduous closed tree canopy 6 3068 Grassland-Alpine 21 
3264 Deciduous closed tree canopy 6 3071 Grassland-Alpine 21 
3266 Deciduous closed tree canopy 6 3067 Grassland-Alpine 21 
3262 Deciduous closed tree canopy 6 3070 Grassland-Alpine 21 
3009 Deciduous open tree canopy 7 3131 Grassland-Coastal 22 
3011 Deciduous open tree canopy 7 3129 Grassland-Coastal 22 
3012 Deciduous open tree canopy 7 3138 Grassland-Montane 23 
3013 Deciduous open tree canopy 7 3139 Grassland-Montane 23 
3008 Deciduous open tree canopy 7 3146 Grassland-Montane 23 
3201 Deciduous open tree canopy 7 3137 Grassland-Subalpine 24 
3237 Deciduous open tree canopy-Montane 8 3145 Grassland-Subalpine 24 
3236 Deciduous open tree canopy-Subalpine 9 3140 Grassland-Subalpine 24 
3112 Deciduous sparse tree canopy 10 3261 Mixed evergreen-deciduous closed tree canopy 25 
3295 Developed 11 3265 Mixed evergreen-deciduous closed tree canopy 25 
3298 Developed 11 3267 Mixed evergreen-deciduous closed tree canopy 25 
3296 Developed 11 3263 Mixed evergreen-deciduous closed tree canopy 25 
3297 Developed 11 3063 Mixed evergreen-deciduous closed tree canopy 25 
3299 Developed 11 3061 Mixed evergreen-deciduous open tree canopy 26 
3903 Developed 11 3062 Mixed evergreen-deciduous open tree canopy 26 
3908 Developed 11 3157 Mixed evergreen-deciduous open tree canopy 26 
3913 Developed 11 3156 Mixed evergreen-deciduous open tree canopy-Lowland 27 
3924 Developed 11 3158 Mixed evergreen-deciduous open tree canopy-Montane 28 
3929 Developed 11 3154 Mixed evergreen-deciduous open tree canopy-Montane 28 
3934 Developed 11 3159 Mixed evergreen-deciduous open tree canopy-Montane 28 
3904 Developed 11 3255 Mixed evergreen-deciduous shrubland 29 
3909 Developed 11 3251 Mixed evergreen-deciduous shrubland-Montane 30 
3914 Developed 11 3170 Mixed evergreen-deciduous sparse tree canopy 31 
3923 Developed 11 3113 Mixed evergreen-deciduous sparse tree canopy 31 
3928 Developed 11 3118 Mixed evergreen-deciduous sparse tree canopy 31 
3900 Developed 11 3120 Mixed evergreen-deciduous sparse tree canopy-Upland 32 
3910 Developed 11 3292 Open Water 33 
3920 Developed 11 3488 Riparian 34 
3925 Developed 11 3495 Riparian 34 
3940 Developed 11 3504 Riparian 34 
3945 Developed 11 3163 Riparian 34 
3901 Developed 11 3164 Riparian 34 
3911 Developed 11 3254 Riparian 34 
3921 Developed 11 3257 Riparian 34 
3926 Developed 11 3253 Riparian 34 
3941 Developed 11 3258 Riparian 34 
3946 Developed 11 3385 Riparian 34 
3902 Developed 11 3162 Riparian 34 
3907 Developed 11 3151 Riparian 34 
3912 Developed 11 3155 Riparian 34 
3922 Developed 11 3152 Riparian-Montane 35 
3927 Developed 11 3252 Riparian-Subalpine 36 
3942 Developed 11 3160 Riparian-Subalpine 36 
3947 Developed 11 3123 Shrubland 37 
3177 Evergreen closed tree canopy 12 3212 Shrubland 37 
3037 Evergreen closed tree canopy 12 3125 Shrubland 37 



3039 Evergreen closed tree canopy 12 3220 Shrubland 37 
3018 Evergreen closed tree canopy 12 3080 Shrubland 37 
3047 Evergreen closed tree canopy 12 3085 Shrubland 37 
3166 Evergreen closed tree canopy 12 3210 Shrubland 37 
3052 Evergreen closed tree canopy 12 3078 Shrubland 37 
3045 Evergreen closed tree canopy 12 3105 Shrubland 37 
3051 Evergreen closed tree canopy 12 3110 Shrubland 37 
3041 Evergreen closed tree canopy 12 3097 Shrubland 37 
3058 Evergreen closed tree canopy 12 3099 Shrubland 37 
3055 Evergreen closed tree canopy 12 3103 Shrubland 37 
3056 Evergreen closed tree canopy 12 3104 Shrubland 37 
3178 Evergreen closed tree canopy 12 3108 Shrubland 37 
3043 Evergreen closed tree canopy 12 3214 Shrubland 37 
3230 Evergreen closed tree canopy 12 3215 Shrubland 37 
3035 Evergreen closed tree canopy 12 3216 Shrubland 37 
3028 Evergreen closed tree canopy 12 3101 Shrubland 37 
3208 Evergreen closed tree canopy 12 3074 Shrubland 37 
3232 Evergreen closed tree canopy 12 3087 Shrubland 37 
3231 Evergreen closed tree canopy 12 3217 Shrubland 37 
3050 Evergreen closed tree canopy 12 3065 Shrubland 37 
3167 Evergreen closed tree canopy 12 3082 Shrubland 37 
3205 Evergreen closed tree canopy 12 3127 Shrubland 37 
3036 Evergreen closed tree canopy 12 3211 Shrubland 37 
3042 Evergreen closed tree canopy 12 3090 Shrubland 37 
3174 Evergreen closed tree canopy 12 3091 Shrubland 37 
3014 Evergreen open tree canopy 13 3109 Shrubland 37 
3034 Evergreen open tree canopy 13 3100 Shrubland 37 
3200 Evergreen open tree canopy 13 3076 Shrubland 37 
3060 Evergreen open tree canopy 13 3121 Shrubland 37 
3206 Evergreen open tree canopy 13 3122 Shrubland 37 
3172 Evergreen open tree canopy 13 3153 Shrubland 37 
3173 Evergreen open tree canopy 13 3213 Shrubland 37 
3027 Evergreen open tree canopy 13 3064 Shrubland 37 
3203 Evergreen open tree canopy 13 3072 Shrubland 37 
3017 Evergreen open tree canopy 13 3079 Shrubland 37 
3202 Evergreen open tree canopy 13 3124 Shrubland 37 
3023 Evergreen open tree canopy 13 3095 Shrubland 37 
3049 Evergreen open tree canopy 13 3204 Shrubland 37 
3019 Evergreen open tree canopy 13 3250 Shrubland 37 
3016 Evergreen open tree canopy 13 3075 Shrubland 37 
3025 Evergreen open tree canopy 13 3081 Shrubland 37 
3059 Evergreen open tree canopy 13 3088 Shrubland 37 
3053 Evergreen open tree canopy 13 3066 Shrubland 37 
3054 Evergreen open tree canopy 13 3093 Shrubland 37 
3179 Evergreen open tree canopy 13 3094 Shrubland 37 
3032 Evergreen open tree canopy 13 3077 Shrubland 37 
3048 Evergreen open tree canopy 13 3096 Shrubland-Coastal 38 
3161 Evergreen open tree canopy 13 3128 Shrubland-Coastal 38 
3029 Evergreen open tree canopy 13 3092 Shrubland-Coastal 38 
3030 Evergreen open tree canopy-Montane 14 3107 Shrubland-Montane 39 
3114 Evergreen open tree canopy-Montane 14 3126 Shrubland-Montane 39 
3024 Evergreen open tree canopy-Montane 14 3098 Shrubland-Montane 39 
3026 Evergreen open tree canopy-Montane 14 3168 Shrubland-Montane 39 
3227 Evergreen open tree canopy-Montane 14 3083 Shrubland-Montane 39 
3234 Evergreen open tree canopy-Montane 14 3084 Shrubland-Montane 39 
3235 Evergreen open tree canopy-Montane 14 3086 Shrubland-Montane 39 
3031 Evergreen open tree canopy-Montane 14 3106 Shrubland-Montane 39 
3228 Evergreen open tree canopy-Montane 14 3169 Shrubland-Subalpine 40 
3021 Evergreen open tree canopy-Montane 14 3186 Shrubland-Upland 41 
3022 Evergreen open tree canopy-Montane 14 3293 Snow-Ice 42 
3233 Evergreen open tree canopy-Subalpine 15 3001 Sparsely Vegetated 43 
3020 Evergreen open tree canopy-Subalpine 15 3002 Sparsely Vegetated 43 
3057 Evergreen open tree canopy-Subalpine 15 3003 Sparsely Vegetated 43 
3038 Evergreen open tree canopy-Subalpine 15 3004 Sparsely Vegetated 43 
3044 Evergreen open tree canopy-Subalpine 15 3007 Sparsely Vegetated 43 
3015 Evergreen open tree canopy-Subalpine 15 3218 Sparsely Vegetated 43 
3046 Evergreen open tree canopy-Subalpine 15 3219 Sparsely Vegetated 43 
3229 Evergreen open tree canopy-Subalpine 15 3221 Sparsely Vegetated 43 
3033 Evergreen open tree canopy-Subalpine 15 3223 Sparsely Vegetated 43 
3165 Evergreen sparse tree canopy 16 3006 Sparsely Vegetated-Alpine 44 
3115 Evergreen sparse tree canopy 16 3222 Sparsely Vegetated-Alpine 44 
3119 Evergreen sparse tree canopy 16 3944 Undeveloped Ruderal Grassland 45 
3116 Evergreen sparse tree canopy 16 3949 Undeveloped Ruderal Grassland 45 
3117 Evergreen sparse tree canopy 16 3943 Undeveloped Ruderal Shrubland 46 

   3948 Undeveloped Ruderal Shrubland 46 
  



Supplementary Table 4: Optimal buffer distance derived from the Michaelis-Menten function. 

Species Buffer Distance (km)       AUC 
A.subverticillata 170 0.848 
A.asperula 180 0.962 
A.incarnata 190 0.843 
A.cryptoceras 200 0.838 
A.erosa 210 0.801 
A.viridflora 240 0.904 
A.cordifolia 250 0.889 
A.eriocarpa 270 0.944 
A.californica 270 0.828 
A.fascicularis 280 0.917 
A.subulata 300 0.947 
A.tuberosa 300 0.921 
 
  



Supplementary Table 5: Feature type and regularization parameters of the highest penalized 
AUC model and model with the highest validation AUC. Feature types are (L = linear, LQ = 
linear+quadratic, LQP = linear+quadratic+product, LQPT = linear+quadratic+product_threshold, 
H = hinge) 

Model pAUC type pAUC reg.  vAUC type vAUC reg. 
Danaus plexippus – all LQP 2 LQPT 1 
Danaus plexippus – adults LQPT 5 LQPT 1 
Danaus plexippus – breeding H 5 LQPT 1 
Danaus plexippus – breeding w/o 
A. curassavica LQPT 4 LQPT 1 

Asclepias speciosa H 3 H 1 
Asclepias fascicularis LQP 5 H 1 
Asclepias subulata H 5 LQPT 2 
Asclepias eriocarpa LQP 1 LQP 1 
Asclepias californica H 4 H 1 
Asclepias asperula LQPT 1 LQPT 1 
Asclepias tuberosa LQP 2 LQPT 1 
Asclepias viridiflora LQP 1 LQPT 1 
Asclepias erosa LQP 2 H 1 
Asclepias subverticillata H 1 H 1 
Asclepias cordifolia H 3 LQPT 1 
Asclepias cryptoceras H 1 H 1 
Asclepias incarnata H 2 H 2 
 

  



Supplementary Table 6: Number of iterations in which the variable was retained. 
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actual evapotranspiration               3   2 4             
annual precipitation           3                 2     
climatic water deficit   3 1   2     3 3             1   
maximum temperature of warmest month         2                         
mean annual temperature                       2           
mean temperature of the warmest quarter   3 4       2                     
mean temperature of the wettest month                                   
minimum temperature of the coldest 
month 

4     2           2 4   2         
number of degree days           2                       
precipitation of coldest season     2           3       2 1     1 
precipitation of warmest season 2     2 2 5   3     3 2 2         
precipitation seasonality               3 2 2               
temperature range           1       2               
temperature seasonality 2 1 1     4   1       2   3     1 
percent clay                                   
percent sand                   2               
percent silt                                   
pH                                   
soil bulk density                                   
aspect             1             2 1   2 
compound topographic index         1             2   3     3 
distance to intermittent water 1   1         2     1   2         
distance to perennial water           5   1   1       2 1   4 
land cover   3 4   2   2   1 2 4   1   2 1 4 
slope                       1 2 3 2 1 4 
Asclepias speciosa 4   2 2              
Asclepias fascicularis 4 3 4 2              
Asclepias subulata                      
Asclepias eriocarpa       1              
Asclepias californica                      
Asclepias asperula                      
Asclepias tuberosa                      
Asclepias viridiflora 1                    
Asclepias erosa                      
Asclepias subverticillata 4   4 2              
Asclepias cordifolia                      
Asclepias cryptoceras                      
Asclepias incarnata                      
 

  



Supplementary Table 7: Equal specificity vs. sensitivity threshold obtained from validation 
data for dividing relative habitat suitability maps into binary suitable and non-suitable areas. 

Danaus plexippus – all records 0.35 

Danaus plexippus – adults only 0.34 

Danaus plexippus – breeding only 0.33 

Danaus plexippus – breeding w/o 
A. curassavica 

0.34 

Asclepias speciosa 0.39 

Asclepias fascicularis 0.40 

Asclepias subulata 0.50 

Asclepias eriocarpa 0.58 

Asclepias californica 0.56 

Asclepias asperula 0.42 

Asclepias tuberosa 0.32 

Asclepias viridiflora 0.54 

Asclepias erosa 0.50 

Asclepias subverticillata 0.54 

Asclepias cordifolia 0.54 

Asclepias cryptoceras 0.27 

Asclepias incarnata 0.26 
 


