
Supplementary Material:
An automatic field plot extraction method from aerial
orthomosaic images

1 PARTICLE SWARM OPTIMIZATION ALGORITHM

The Particle Swarm Optimization (PSO) algorithm is inspired by natural collective motion patterns, such
as shoaling of fish, flocking of birds and herding of quadrupeds, wherein the movement of an individual is
not only governed by its own position but also guided by the position of others in the swarm. Depending
on the target(s), the swarm moves and converges to a single or multiple positions. The main benefit of the
PSO algorithm is that it does not rely on gradient computation which makes it easily applicable to solving
non-convex problems defined by non-differentiable functions. Furthermore, it is largely robust to parameter
initialization and is likely to return the same best solution, even in the presence of multiple alternative
solutions.

Consider a swarm of K particles in an N -dimensional space characterized by the position θ ∈ RN×K ,
and velocity, θ̇ ∈ RN×K . The particle positions are initialized with random numbers sampled from a
uniform distribution within specified bounds

θ = {θk ∈ RN : |θk,n| < ∆θ
n, k = 1, · · · , K, n = 1, · · · , N} (S1)

where ∆θ = {∆θ
n ∈ R, n = 1, · · · , N} ∈ RN is a vector of bounds on the domain of particle position. A

particle’s initial velocity is also randomly initialized within the range of particle position,

θ̇ = {θ̇k ∈ RN : |θ̇k,n| < 2∆θ
n, k = 1, · · · , K, n = 1, · · · , N} (S2)

The current position of a particle is initially taken as the best known position for that particle,

θ∗k = θk (S3)

A cost function (Equation (8)) is evaluated for each particle, fk = f(θk), and the minimum value over the
set of particles in the swarm is

f(θ̂) = min
k∈K

f(θk) (S4)

such that the corresponding best position within in the swarm is

θ̂ = arg min
k∈K

f(θk) (S5)

The termination counter c is initialized to 0 and the position of the kth particle is iteratively updated as
follows. A random subset of J = Jmin = max{1, bγKc} particles is formed around the kth particle. Here
0 < γ < 1 is the minimum fraction of particles in its neighborhood. The position of the particle with
minimum cost in the neighborhood of the kth particle is assigned to

θ̌k = min
j∈J

f(θj) (S6)

1

Supplementary Material

The particle velocity is updated using a weighted sum of its previous velocity, difference between its current
position and best achieved position, and difference between its current position and best particle position in
its neighborhood,

θ̇k = ρθ̇k + α(θ∗k − θk)� µα + β(θ̌k − θk)� µ2 (S7)

where � is the Hadamard (i.e., component-wise) product. The individual adjustment weight (α) and group
adjustment weight (β), control the contribution of particles’ position difference from individual best and
group best position, respectively, to the overall update. The factors µα ∈ RN and µβ ∈ RN are drawn from
uniform random distributions and provide a scaling of the second and third contributory updates to the
velocity in the respective dimensions. The inertia factor ρ ∈ R together with a particle’s previous velocity
defines the momentum of that particle in each iteration. The position of the particle is updated using its
current position and velocity:

θk = max(min(θk + θ̇k,∆
θ),−∆θ) (S8)

wherein the updated position is truncated at the positional bounds.

If the value of the cost function at the particle’s new position is lower than the value at its previous
minimum, then the particle’s best position is updated with the new position

θ∗k = θk, ∀f(θk) < f(θ∗k) (S9)

If the value of the cost function at the particle’s new position is also lower than the swarm’s minimum then,

θ̂ = θk, ⇐⇒ f(θk) < f(θ̂) (S10)

In case there is no improvement in the minimum cost of the swarm, the size of the particle neighborhood
is expanded, Jnew = min(Jold + Jmin, K), the termination counter is incremented, c = c + 1 and the
neighbourhood size is reset Jold = Jnew. However, if the swarm’s minimum cost improves, the particle
neighborhood is reset back to the default size Jnew = Jmin and the termination counter is decremented,
c = max(0, c− 1). Additionally, the inertia is adaptively updated according to a piece-wise linear function
of the optimization progress

ρnew =

2ρold, c ≤ 1

ρold, 1 < c < 6

ρold/2, c ≥ 6

(S11)

with the reset ρold = ρnew. The above function initially boosts momentum and then gradually reduces it as
the swarm moves towards a minimum position.

The algorithm terminates when the relative change in the swarm’s minimum cost f(θ̂) over a number
cmax of iterations is less than a prescribed tolerance (τ).

1.1 Implementation

A MATLAB implementation of the above optimization algorithm was utilized in the proposed grid
cell optimization methodology. The cost function was implemented in a vectorized manner so as to be
simultaneously applied to a swarm f : RN×K → RK , where N = 2PQ is the number of parameters. The
default swarm size was K = min(100, 10× 2N) which was initialized with K − 1 random particles plus
a null particle θk = 0 ∈ RN . Equal values of the adjustment factors for individual (α = 1.5) and group
(β = 1.5) movement were used with a minimum neighbour fraction of γ = 0.25. The reproducibility of

2

Supplementary Material

the algorithm was ensured by a fixed random seed so that a repeated run with the same seed achieved the
same solution.

Frontiers 3

	Particle Swarm Optimization algorithm
	Implementation

