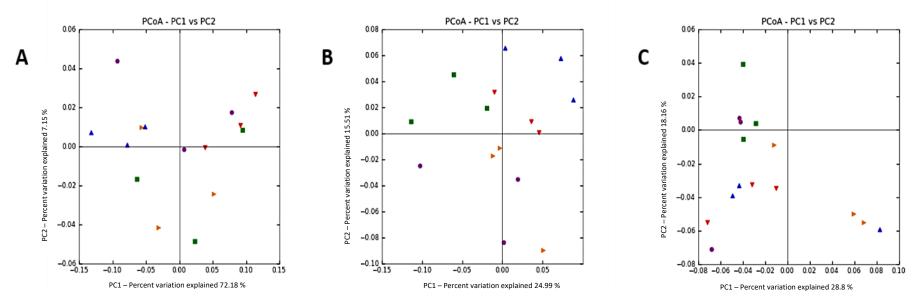
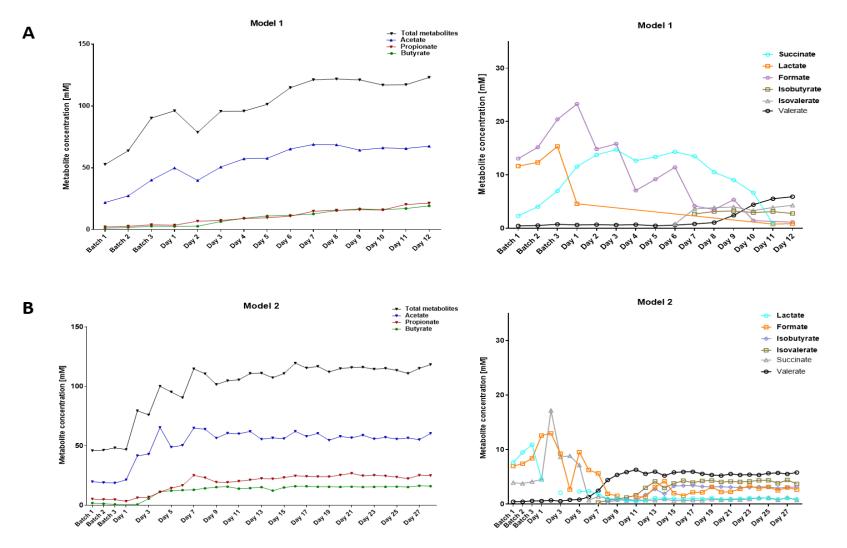
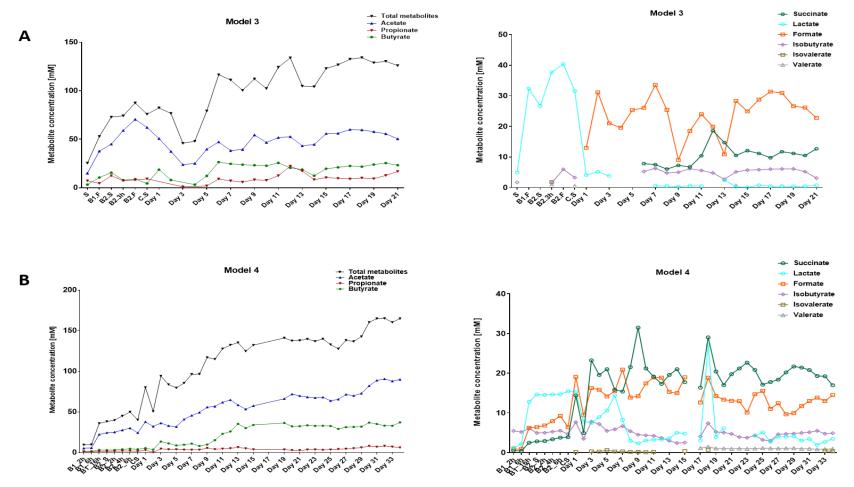
SUPPLEMENTARY MATERIAL

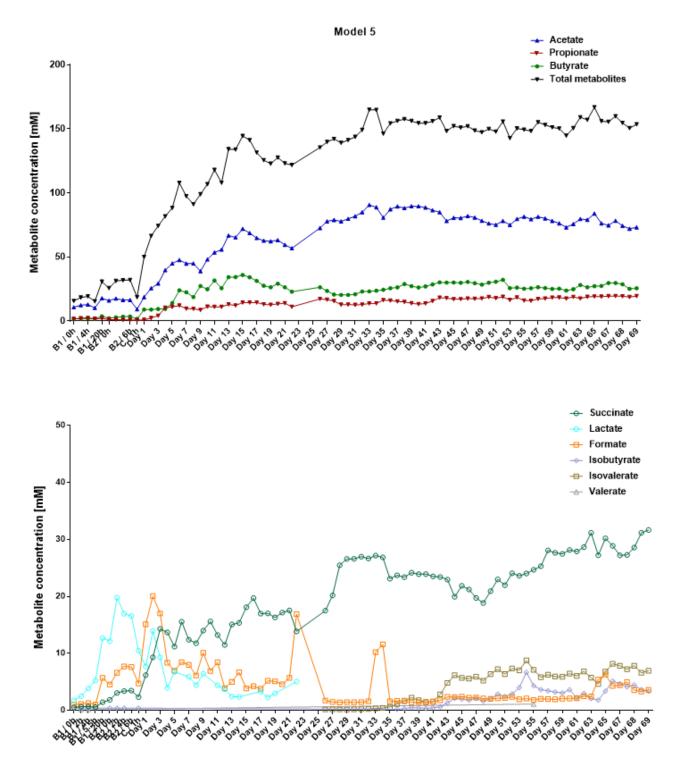

Stepwise development of an *in vitro* continuous fermentation model for the murine caecal microbiota

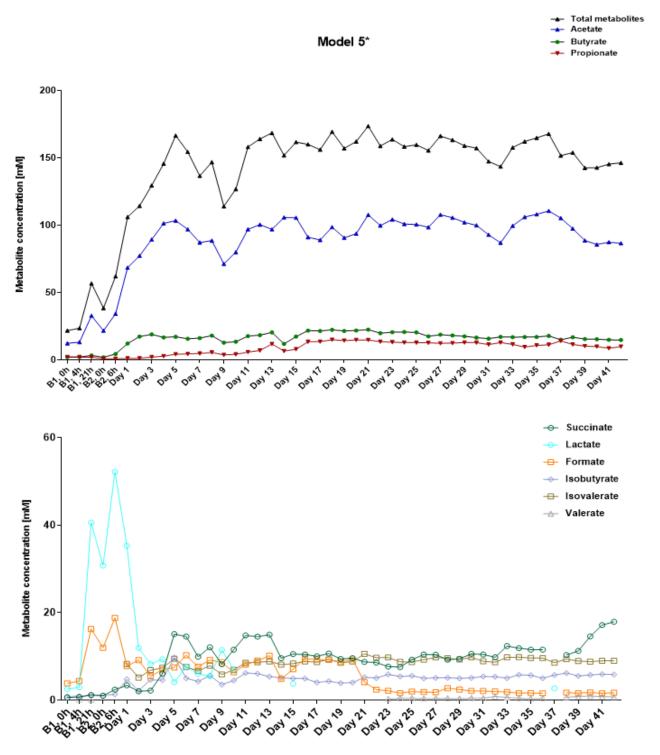
Sophie A. Poeker¹, Christophe Lacroix¹, Tomas de Wouters¹, Marianne R. Spalinger², Michael Scharl² and Annelies Geirnaert^{1*}


¹ Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Switzerland.

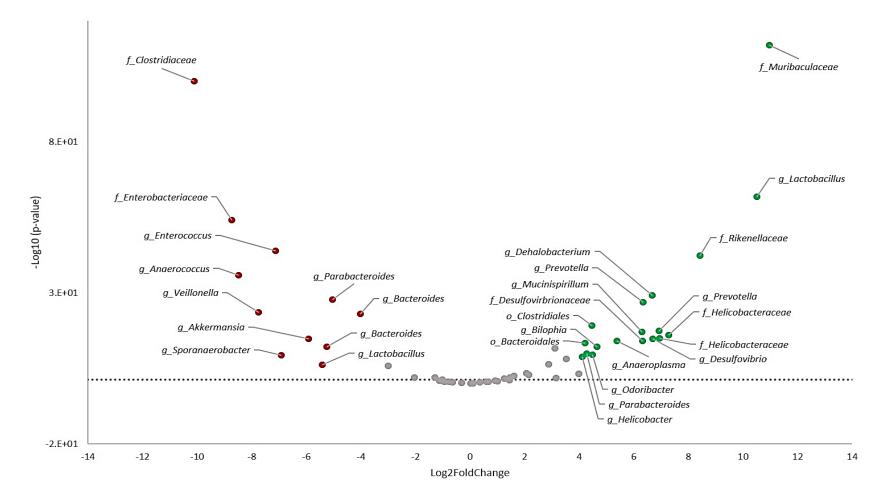
² Division of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland.


* Corresponding author: Annelies Geirnaert, Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092 Zürich, Switzerland; Phone: +41 44 632 14 03; mail: annelies.geirnaert@hest.ethz.ch

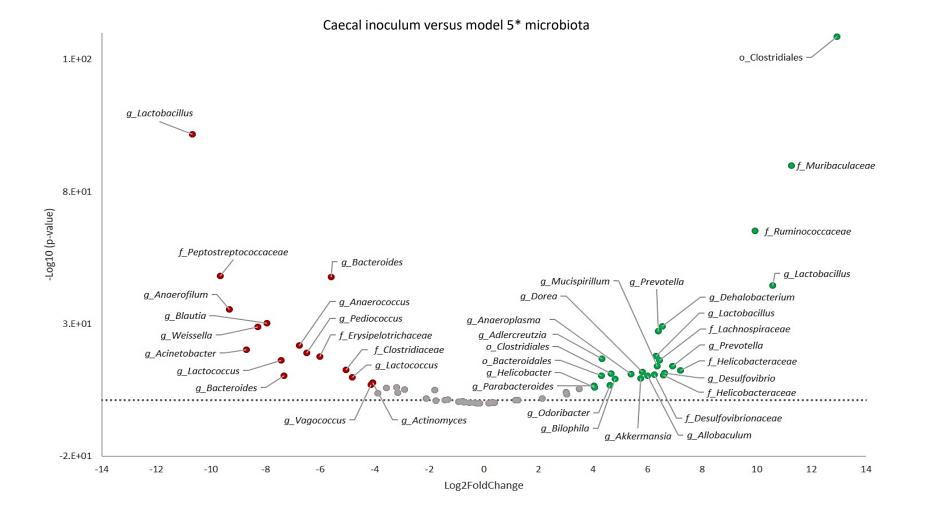

Supplementary Figure S1: Individual variations among the caecal murine microbial communities. PCoA showing caecal microbiota from WT C57BL/6 mice housed in different cages based on weighted (A), unweighted (B) and generalized (C) UniFrac distance matrix. N=3 per cage; cage 1: red; cage 2: blue; cage 3: orange; cage 4: green; cage 5: purple


Supplementary Figure S2: Daily fermentation metabolite concentrations in reactor effluents of models 1 and 2 (A & B) measured by HPLC. Left the end metabolites (acetate, propionate and butyrate), and right the intermediate metabolites (formate, lactate and succinate) and branched-chain fatty acids (isobutyrate, isovalerate) and valerate. Colonization: three consecutive fed-batch fermentations for bead colonization.

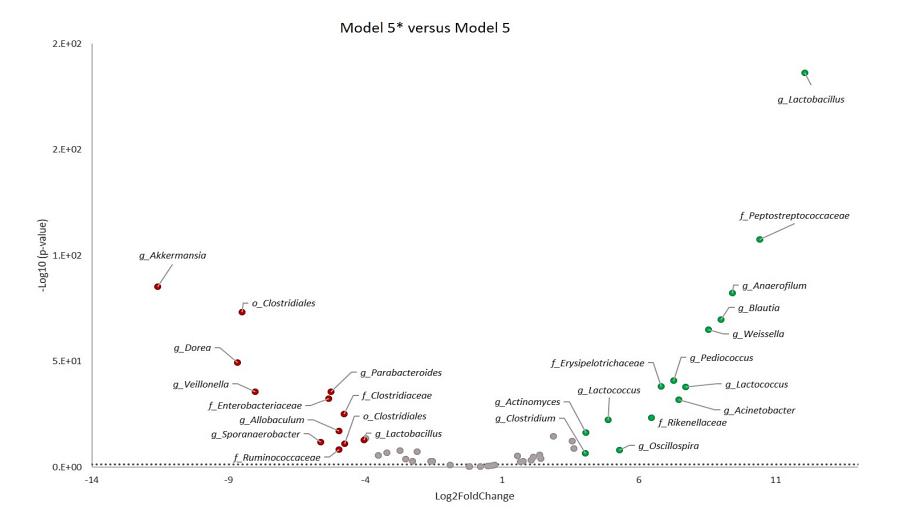
Supplementary Figure 3: Daily fermentation metabolite concentrations in reactor effluents of models 3 and 4 (A & B) measured by HPLC. Left the end metabolites (acetate, propionate and butyrate), and right the intermediate metabolites (formate, lactate and succinate) and branched-chain fatty acids (isobutyrate, isovalerate) and valerate. Colonization: three consecutive fed-batch fermentations for bead colonization.

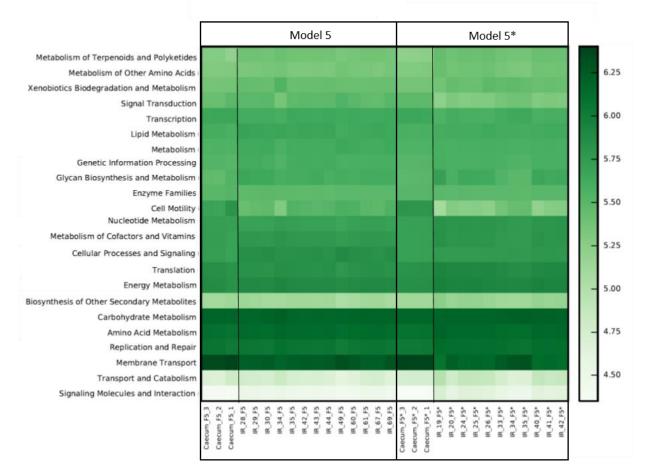


Supplementary Figure S4: Daily fermentation metabolite concentrations in reactor effluents of models 5 measured by HPLC. On top the end metabolites (acetate, propionate and butyrate), and below the intermediate metabolites (formate, lactate and succinate) and branched-chain fatty acids (isobutyrate, isovalerate) and valerate. Colonization: three consecutive fed-batch fermentations for bead colonization.



Supplementary Figure S5: Daily fermentation metabolite concentrations in reactor effluents of models 5* measured by HPLC. On top the end metabolites (acetate, propionate and butyrate), and below the intermediate metabolites (formate, lactate and succinate) and branched-chain fatty acids (isobutyrate, isovalerate) and valerate. Colonization: three consecutive fed-batch fermentations for bead colonization.


Caecal inoculum versus model 5 microbiota


Supplementary Figure S6: Microbiota plots illustrating OTUs that were significantly enriched (green) and reduced (red) in reactor effluent of model 5 compared to the caecal inoculum as determined by differential abundance analysis. Each point represents an individual OTU, and the Y-axis indicates the Log2 fold change of relative abundance. The dashed line represents the statistically p-value of 0.05.

Supplementary Figure S7: Microbiota plots illustrating OTUs that were significantly enriched (green) and reduced (red) in reactor effluent of model 5* compared to the caecal inoculum as determined by differential abundance analysis. Each point represents an individual OTU, and the Y-axis indicates the Log2 fold change of relative abundance. The dashed line represents the statistically p-value of 0.05.

Supplementary Figure S8: Microbiota plots illustrating OTUs that were significantly enriched (green) and reduced (red) in reactor effluent of model 5 versus reactor effluent of model 5* as determined by differential abundance analysis. Each point represents an individual OTU, and the Y-axis indicates the Log2 fold change of relative abundance. The dashed line represents the statistically p-value of 0.05.

Supplementary Figure S9: Predictive functional profiling of microbial communities of caecal inocula and model 5 and model 5* (during stabilization) by PICRUSt. Heatmap depicting the log transformed gene abundance of microbiota-associated predicted KEGG pathways. Numbers in scale represent log range of gene abundances for this dataset.

Supplementary Table S1: Composition of murine nutritive growth medium (g/L) (A) and of three nutritive mouse chows (B).

Α

	Medium 1	Medium 2
Constituent	g <i>l</i> l	g <i>l</i> l
Pectine (citrus)	2	2
Xylane (oatspelts)	4.8	4.8
Arabinogalactan (larch wood)	4.8	4.8
Soluble starch (corn)	6.8	2
Mucine	4	4
Caseinacid hydrolysate	3.6	3.6
Peptone water	6	6
Bacto™ Tryptone	6	6
Yeastextract	5.4	5.4
L-Cystein HCI	0.8	0.8
Bile salts (adult formulation: 0.4)	0.4	0.4
KH ₂ PO ₄	0.5	0.5
NaHCO ₃	1.5	1.5
NaCl	4.5	4.5
KCI	4.5	4.5
MgSO ₄ anhydrous (M: 120.37)	0.61	0.61
C aCl ₂ ·2H ₂ O (M: 147.02)	0.1	0.1
MnC l ₂ ·4H ₂ O (M: 1 97.91)	0.2	0.2
FeSO ₄ ·7H ₂ O (M: 278.02)	0.005	0.005
Hemin solution	0.05	0.05
Tween 80	1 ml	1 m
Vitamin solution	1 ml	1 m

В

KLIBA NAFAG 3430 Mouse and Rat							
Carbohydrates	58.7%	approx 68 % fibers					
Proteins	18.5%						
Fat/ash	10.8%						

Supplementary Table S2: Primers used for the enumeration of specific bacterial populations in caecal and effluent samples by qPCR analysis

Name	Sequence 5'-3'	Target gene	Reference		
Eub 338F	ACT CCT ACG GGA GGC AGC AG	Total bacteria	Guo et al., 2008		
Eub 518R	ATT ACC GCG GCT GCT GG	Total bacteria	Guo et al., 2006		
Firm 934F	GGA GYA TGT GGT TTA ATT CGA AGC A	A ATT CGA AGC A Firmicutes			
Firm 1060R	AGC TGA CGA CAA CCA TGC AC	Finneutes	Guo et al., 2008		
Clep 866mF	TTA ACA CAA TAA GTW ATC CAC CTG G	Clostridium Cluster IV	Ramirez-Farias et al., 2009		
Ċlep 1240mR	ACC TTC CTC CGT TTT GTC AAC	clostrialarin cluster iv	Nammez-Fanas et al., 2005		
Clep 14aF	AAA TGA CGG TAC CTG ACT AA	Clostridium Cluster XIVa	Matsuki et al., 2002		
Clep 14aR	CTT TGA GTT TCA TTC TTG CGA A	clostrialarii cluster xiva	Matsuki et al., 2002		
Bac 303F	GAA GGT CCC CCA CAT TG	Bacteroidetes	Bartosch et al., 2004		
Bact Pre-rev	CTT TGA GTT TCA CCG TTG CCG G	bacterordetes	Bartosch et al., 2004		
Bac 303F	GAA GGT CCC CCA CAT TG	Bacteroides spp.	Ramirez-Farias et al., 2009		
Bfr-Femrev	CGC KAC TTG GCT GGT TCA G	bucteroldes spp.	Raininez-Farlas et al., 2005		
Eco 1457F	CAT TGA CGT TAC CCG CAG AAG AAG C	Enterobacteriaceae	Bartosch et al., 2004		
Eco 1652R	CTC TAC GAG ACT CAA GCT TGC	EnteroDuctenuceue	Baltosch et al., 2004		
F_Lacto 05	AGC AGT AGG GAA TCT TCC A	Lactobacillus			
R_Lacto 04	CGC CAC TGG TGT TCY TCC ATA TA	Leuconostoc Pediococcus spp.	Furet et al., 2009		
AM1	CAG CAC GTG AAG GTG GGG AC	Akkermanisa spp.	Collado et al., 2007		
AM2	CCT TGC GGT TGG CTT CAG AT	Akkermunisu spp.	Conado et al., 2007		

Supplementary Table S3: Mean metabolite concentrations with standard error of effluent samples in reactor effluents during stabilization phase and caecal contents (n=15).

	Concentrations (mM)										_		
	Formate	Acetate	Propionate	Butyrate	Valerate	Lactate	Succinate	BCFAs	Total metabolites	Acetate	Propionate	Butyrate	Days
Model 1													
Caecal content ¹	3.5	40.2	3.9	3.6	ND	12.0	4.5	ND	55.7	83.3	8.3	8.3	
IR ²	5.4 ± 3.6	64.6±4.3	14.9 ± 4.4	14.4 ± 3.4	2.4 ± 2.3	0.8±0.1	10.1 ± 4.6	4.6 ± 3.3	114.8 ± 9.7	69.1	16.0	14.9	d4-12
Model 2													
Caecal content ¹	ND	30.2	5.6	4.6	ND	22.2	8.4	ND	48.8	73.2	14.6	12.2	
IR ²	2.6 ± 0.7	57.6±2.4	24.1 ± 1.4	15.3±0.9	5.8 ± 0.2	1.0 ± 0.1	0.8 ± 0.2	7.0±0.9	114.0 ± 3.2	60.6	24.2	15.2	d12-28
Model 3													
Caecal content ¹	ND	59.8	ND	46.7	ND	ND	28.0	0.8	88.6	56.1	ND	43.9	
IR ²	17.8±9.0	56.5 ± 3.2	11.2 ± 2.8	22.5 ± 1.9	ND	0.5±0.2	11.3 ± 1.0	5.5 ± 1.1	134.8±4.4	62.6	12.1	25.3	d15-21
Model 4													
Caecal content ¹	ND	73.2	15.4	82.5	0.7	1.5	9.1	152.6	335.0	42.7	8.8	48.5	
IR ²	12.7±1.8	74.8 ± 9.6	5.1±1.9	33.4 ± 2.2	1.0 ± 0.0	3.8±1.0	19.7±1.7	2.5 ± 0.4	154.3 ± 13.4	66.4	4.4	29.2	d19-34
Model 5													
Caecal inoculum ¹	ND	88.0	12.8	39.9	0.8	5.2	5.3	ND	152.0	62.4	9.2	28.4	
IR ²	2.7±2.1	80.4 ± 5.1	16.8 ± 2.1	26.6 ± 3.0	ND	ND	25.1±3.4	3.5 ± 2.2	158.8±8.9	64.5	13.7	21.8	d26-69
Model 5*													
Caecal inoculum ¹	1.2	33.2	5.9	11.8	0.5	3.5	6.5	ND	59.1	64.7	11.8	23.5	
IR ²	3.8±3.1	98.5 ± 7.5	12.0 ± 1.4	18.2 ± 2.7	ND	1.3 ± 0.5	10.5 ± 3.1	14.4 ± 1.1	160.9 ± 7.4	76.7	9.3	14.0	d13-42

¹ extracted from 100 mg of caecal content

² Mean and standard error reported over whole stabilized fermenation time

Supplementary Table S4: qPCR quantification of bacterial populations in caecal inocula and reactor effluent samples of different models at the end of the stabilization phase.

	Total 16S rRNA gene	Firmicutes	Ruminococcaceae	Lachnospiraceae	Bacteroidetes	Bacteroides spp.	Enterobacteriaceae	Lactobacillus spp.	Akkermansia spp.	Days
Model 1										
Caecal inoculum ¹	11.9	11.0	9.6	9.0	10.9	10.4	7.7	9.7	4.9	
IR ³	10.7	9.4	8.4	8.4	10.4	10.2	9.2	7.3	4.6	8
Model 2										
Caecal inoculum ¹	11.8	10.8	9.2	8.9	11.0	10.3	8.1	9.5	4.8	
IR ⁴	10.7 ± 0.2	9.4 ± 0.2	8.6 ± 0.3	8.4 ± 0.3	10.1 ± 0.4	9.0 ± 0.3	8.8 ± 0.5	6.4 ± 0.1	4.7±0.1	26-28
Model 3										
Caecal inoculum ¹	11.2	11.0	9.0	10.6	10.3	9.9	6.2	8.7	5.0	
IR ⁴	11.2 ± 0.3	10.8 ± 0.3	BDL	9.2 ± 0.3	10.8 ± 0.2	9.8 ± 0.1	10.1 ± 0.2	6.9 ± 0.4	4.6 ± 0.1	17-19
Model 4										
Caecal inoculum ¹	11.6	11.4	7.8	10.5	10.5	9.5	6.0	9.3	8.1	
IR ⁴	11 ± 0.1	10.3 ± 0.1	7.7 ± 0.1	9.4 ± 0.3	10.0 ± 0.3	9.7 ± 0.3	9.8 ± 0.7	BDL	9.5 ± 0.5	27-29
Model 5										
Caecal inoculum ²	12.1 ± 0.0	11.1 ± 0.0	8.3 ± 0.0	10.1 ± 0.0	10.8 ± 0.2	7.5 ± 0.3	5.7 ± 0.0	8.4 ± 0.1	8.6 ± 0.1	
IR ⁴	11.5 ± 0.5	10.3 ± 0.1	7.1 ± 0.3	8.2 ± 0.3	10.6 ± 0.2	10.0 ± 0.1	7.7 ± 0.1	6.6 ± 0.1	8.6 ± 0.4	29, 30 & 36
Model 5*										
Caecal inoculum ²	11.7 ± 0.2	11.1 ± 0.2	9.1 ± 0.1	10.4 ± 0.0	10.4 ± 0.2	9.3 ± 0.1	6.3 ± 0.2	8.2 ± 0.2	6.7 ± 0.1	
IR ⁴	11.4 ± 0.1	10.4 ± 0.1	7.5 ± 0.1	8.8 ± 0.2	9.7 ± 0.5	9.2 ± 0.5	6.6 ± 0.3	8.5 ± 0.6	5.7 ± 0.1	18-20

¹ Data are mean log₁₀ copies 16S rRNA gene g⁻¹ of caecal inoculum used for fermentation

² Data are mean log₁₀ copies 16S rRNA gene g⁻¹ ± SD of caecal inoculum (extracted twice) used for fermentation

 $^3\text{Data}$ are mean log10 copies 16S rRNA gene mL $^1\,$ of one day at the end of the stabilization period

⁴ Data are mean log10 copies 165 rRNA gene mL¹ ± SD of one day at the end of the stabilization period extracted in duplicate; samples were analyzed in duplicate

BDL of 4.0 log₁₀ copies per mL

Supplementary Table S5 – Summary microbial phyla and most abundant (> 1 %) bacterial families obtained by V4 region 16S amplicon sequencing within PolyFermS reactors of model 5 and 5*. Values < 1 % are summarized in the group «Others».

	Caecal		IR Model 5		Caec	al			
Taxon	inoculu	um 5	IR Mod	lel 5	inoculu	m 5*	IR Model 5*		
Actinobacteria	0.7% ±	0.5%	0.1% ±	0.1%	0.3% ±	0.1%	0.4% ±	0.9%	
Actinomycetaceae	0.0% ±	0.0%	0.0% ±	0.0%	0.0% ±	0.0%	0.3% ±	0.7%	
Microbacteriaceae	0.0% ±	0.0%	0.0% ±	0.0%	0.0% ±	0.0%	0.0% ±	0.0%	
Bifidobacteriaceae	0.3% ±	0.6%	0.0% ±	0.0%	0.1% ±	0.0%	0.1% ±	0.1%	
Coriobacteriaceae	0.4% ±	0.1%	0.1% ±	0.1%	0.3% ±	0.0%	0.1% ±	0.1%	
Bacteroidetes	11.1% ±	3.1%	29.1% ±	6.4%	9.1% ±	1.7%	64.7% ±	14.2%	
UC Bacteroidales	$0.1\% \pm$	0.1%	0.0% ±	0.0%	0.0% ±	0.0%	0.0% ±	0.0%	
Bacteroidaceae	0.9% ±	0.5%	24.4% ±	7.3%	2.6% ±	0.5%	64.3% ±	14.3%	
Porphyromonadaceae	0.0% ±	0.0%	4.7% ±	2.1%	0.4% ±	0.2%	0.2% ±	0.1%	
Prevotellaceae	0.2% ±	0.2%	0.0% ±	0.0%	0.2% ±	0.1%	0.0% ±	0.0%	
Rikenellaceae	$1.4\% \pm$	0.4%	0.0% ±	0.0%	0.6% ±	0.7%	0.2% ±	0.2%	
Muribaculaceae	8.2% ±	2.1%	0.0% ±	0.0%	4.7% ±	1.0%	0.0% ±	0.0%	
Odoribacteraceae	0.1% ±	0.1%	0.0% ±	0.0%	0.0% ±	0.0%	0.0% ±	0.0%	
Paraprevotellaceae	0.1% ±	0.1%	0.0% ±	0.0%	0.6% ±	0.4%	0.0% ±	0.0%	
Deferribacteraceae	0.1% ±	0.1%	0.0% ±	0.0%	0.3% ±	0.3%	0.0% ±	0.0%	
Firmicutes	86.9% ±	3.3%	40.0% ±	7.5%	86.7% ±	4.0%	31.8% ±	12.5%	
Planococcaceae	0.0% ±	0.0%	0.0% ±	0.0%	0.0% ±	0.0%	0.1% ±	0.2%	
Enterococcaceae	0.0% ±	0.0%	0.8% ±	0.3%	0.0% ±	0.0%	0.1% ±	0.1%	
Lactobacillaceae	5.6% ±	5.9%	0.2% ±	0.2%	2.0% ±	0.8%	11.5% ±	4.8%	
Leuconostocaceae	0.0% ±	0.0%	0.0% ±	0.0%	0.0% ±	0.0%	0.8% ±	0.5%	
Streptococcaceae	0.0% ±	0.0%	0.0% ±	0.0%	0.0% ±	0.0%	0.4% ±	0.5%	
UC Clostridiales	57.8% ±	10.9%	2.0% ±	1.3%	62.1% ±	4.6%	0.0% ±	0.0%	
Clostridiaceae	$0.1\% \pm$	0.0%	28.7% ±	8.0%	0.0% ±	0.0%	0.9% ±	0.8%	
Dehalobacteriaceae	0.4% ±	0.3%	0.0% ±	0.0%	0.2% ±	0.1%	0.0% ±	0.0%	
Eubacteriaceae	0.0% ±	0.0%	0.0% ±	0.0%	0.0% ±	0.0%	0.0% ±	0.0%	
Lachnospiraceae		12.4%	3.6% ±	1.3%	13.7% ±	1.2%	8.5% ±	5.3%	
Peptostreptococcaceae	0.0% ±	0.0%	0.0% ±	0.0%	0.0% ±	0.0%	3.3% ±	2.2%	
Ruminococcaceae		0.9%	1.4% ±	0.7%	6.4% ±	1.5%	5.5% ±	3.1%	
Veillonellaceae	0.0% ±	0.0%	0.8% ±	0.5%	0.0% ±	0.0%	0.0% ±	0.0%	
Mogibacteriaceae	0.1% ±	0.0%	0.0% ±	0.0%	0.0% ±	0.0%	0.0% ±	0.0%	
Tissierellaceae	0.0% ±	0.0%	2.0% ±	1.1%	0.0% ±	0.0%	0.4% ±	0.4%	
Erysipelotrichaceae	0.1% ±	0.1%	0.6% ±	0.4%	2.2% ±	0.6%	0.3% ±	0.2%	
Proteobacteria	0.2% ±	0.0%	10.5% ±	6.7%	3.5% ±	1.9%	3.1% ±	2.0%	
Alcaligenaceae	0.1% ±	0.0%	0.5% ±	0.6%	0.5% ±	0.3%	1.8% ±	1.3%	
Desulfovibrionaceae		0.0%	0.0% ±					0.0%	
Helicobacteraceae		0.0%	0.0% ±	0.0%				0.0%	
Enterobacteriaceae		0.0%	10.0% ±	6.6%				0.3%	
Moraxellaceae		0.0%	0.0% ±	0.0%				1.5%	
Verrucomicrobia	0.8% ±	0.7%	20.3% ±					0.0%	
Verrucomicrobiaceae	0.8% ±	0.7%	20.3% ±	7.8%	0.0% ±	0.0%	0.0% ±	0.0%	

References

- Bartosch S, Fite A, Macfarlane GT, McMurdo ME. (2004). Characterization of bacterial communities in feces from healthy elderly volunteers and hospitalized elderly patients by using real-time PCR and effects of antibiotic treatment on the fecal microbiota. *Appl Environ Microbiol* **70**: 3575-3581.
- Collado MC, Calabuig M, Sanz Y. (2007). Differences between the fecal microbiota of coeliac infants and healthy controls. *Curr Issues Intest Microbiol* **8:** 9-14.
- Furet JP, Firmesse O, Gourmelon M, Bridonneau C, Tap J, Mondot S *et al.* (2009). Comparative assessment of human and farm animal faecal microbiota using real-time quantitative PCR. *FEMS Microbiol Ecol* **68**: 351-362.
- Guo X, Xia X, Tang R, Zhou J, Zhao H, Wang K. (2008). Development of a real-time PCR method for Firmicutes and Bacteroidetes in faeces and its application to quantify intestinal population of obese and lean pigs. Lett Appl Microbiol 47: 367-373.
- Matsuki, T., et al., Development of 16S rRNA-gene-targeted group-specific primers for the detection and identification of predominant bacteria in human feces. Applied and environmental microbiology, 2002. 68(11): p. 5445-5451.
- Ramirez-Farias C, Slezak K, Fuller Z, Duncan A, Holtrop G, Louis P. (2009). Effect of inulin on the human gut microbiota: stimulation of Bifidobacterium adolescentis and Faecalibacterium prausnitzii. *Brit J Nutr* **101**: 541-550.