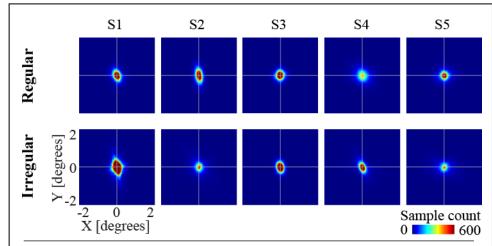
Supplementary Material

Scene regularity interacts with individual biases to modulate perceptual stability

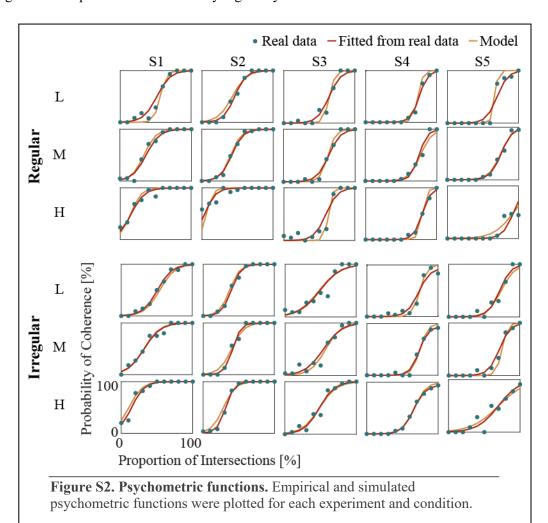
Qinglin Li^{1,2,3,6,•},* Andrew Isaac Meso^{4,•}, Nikos K. Logothetis^{1,5} and Georgios A. Keliris^{1,3,6,*}

1. Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tuebingen, Germany

- 2. IMPRS for Cognitive and Systems Neuroscience, University Tuebingen, Germany
- 3. Bernstein Center for Computational Neuroscience, Tuebingen, Germany
- 4. Psychology and Interdisciplinary Neurosciences Research Group, Faculty of Science and Technology, Bournemouth University, UK
- Division of Imaging Science and Biomedical Engineering, University of Manchester, Manchester M13 9PT, United Kingdom
- 6. Department of Biomedical Sciences, University of Antwerp, 2610 Wilrijk, Belgium
- **↑** Equal contribution


* CORRESPONDENCE:

Prof. Dr. Georgios A. Keliris georgios.keliris@uantwerpen.be or


Dr. Qinglin Li

qinglin.li@tuebingen.mpg.de

Supplementary Figures

Figure S1. Eye movement results. Each subplot shows the averaged eye movement results of each subject from regular/irregular conditions.

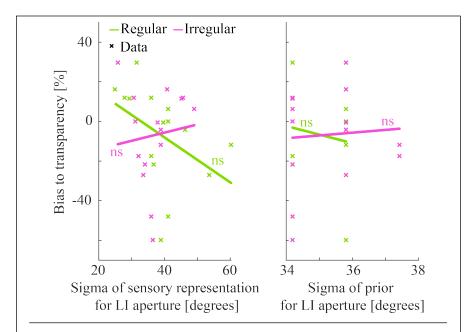


Figure S3. The amount of bias of transparent perception is not correlated with sensory representation of LI aperture (regular condition: r: -0.43, p: 0.10; irregular condition: r: 0.10, p: 0.70), nor with prior (regular condition: r: -0.14, p: 0.60; irregular condition: r: 0.06, p: 0.81)