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Appendix I. Materials and methods

Historical pressure data 
The study focused on food-web indicators of trophic functions in the pelagic food web of the central Baltic Sea. To capture regional variation, we studied two regions: monitoring data were collected from the Bornholm Basin (corresponding to ICES subdivision 25) and the Gotland Basin (ICES subdivision 28), illustrated in Fig. S1. Climate parameters, primary production proxied by chlorophyll a and fishing pressures were tested as explanatory variables in models.

Chlorophyll and climate data
Chlorophyll a, temperature and salinity data were obtained from the Baltic Environment Database, maintained by the Baltic Nest Institute, Sweden. ChlSummer time series was calculated by averaging the July-August measurements of chlorophyll a in the surface layers (0-10 m) at stations located at depths >25 m in the two areas respectively. We calculated TempSummer by averaging the measurements of sea surface temperature (0-10 m depth) from July-August each year at stations located at depths >25 m in the two areas respectively. SalinWinter represented the average of deepwater (70-100 m) November-February salinity measurements at the same stations.
	
IFM Geomar (Helmholtz-Zentrum für Ozeanforschung Kiel), Germany, provided model data on oxygen concentrations in the cod reproductive volume – the water with salinity > 11 psu and oxygen concentration > 2 ml/l. O2Cod, which was the mean of May and August values each year, was used in the analysis.

We further calculated the average climate conditions during the early life-stages of the fish species making up the indicators. The fish caught in the surveys are mainly adults, whose viability to a lesser extent is affected by climatic conditions than for fry and immature fish. Influence of climate on fish abundance (total, or above a certain size threshold) would thereby be more closely linked to climate conditions in earlier years. For sprat, we used the moving average of 1-2 years earlier of the time series TempSummer and SalinWinter. For herring, we used the moving average of 1-3 years before. Lastly, for cod and also for the LPF indicator, the moving average window covered 2-3 years before and in addition to TempSummer and SalinWinter, a lagged moving average of O2Cod was also calculated.

The O2Cod data were available from 1978 and hence it was not possible to calculate the moving average of 2-3 years earlier for the first two years to be analyzed. Smaller datasets, excluding the years 1979-1980, were therefore first analyzed to evaluate the influence of O2Cod_2-3yearsbefore on the Cod indicator. As O2Cod_2-3yearsbefore was never included in selected models, the most parsimonious models were rerun using the dataset starting in 1979 to confirm the selection and generate model components compatible with those for other indicators.

Fisheries data
Fishing mortality data were obtained from ICES WGBFAS (ICES, 2014). Fishing mortality is estimated per stock, which results in the same estimate for the Bornholm Basin and the Gotland Basin in the case of cod, sprat and herring. The species-specific fishing mortalities (Cod: FCod, Sprat: FSpr, Herring: FHer) were each used as a covariate when modeling the respective abundance indicator. For size-based fish indicators FCod was evaluated as a covariate influencing LPF, while FSpr and FHer were both evaluated for influence on SPF. 






Modelling approach
Characteristics of the generalized additive models (GAMs) and threshold-formulations of GAMs (tGAMs)
We used two types of non-parametric regression models: Generalized additive models (GAMs) and threshold-formulations of GAMs (tGAMs).

A GAM has a formulation

yt = a + s1(x1t) + … + sn(xnt) + εt	εt ~ N(0, σ2)

where yt is the response variable at year t, a is the intercept, s the thin plate smoothing spline functions (Wood, 2003) and x1 … xn the explanatory variables. The unexplained variance, ε, is assumed to be normally distributed with a mean of 0.

The threshold-formulation (tGAMs) allows the relationships between two variables to change depending on the value of a third variable θ

aI + s1(x1t) + … + si(xit)    if  θ ≤ r   			
yt = 					     	 + εt   
aII + sj(xjt) + … + sn(xnt)   if  θ > r   

where r is the threshold that separates two system configurations.  Alternatively, some terms may be included over the entire range of values, in this example xat:

       	           s1(x1t) + … + si(xit)    if  θ ≤ r   			
yt =  a + sa(xat) +				      	  + εt   
       	           sj(xjt) + … + sn(xnt)    if  θ > r   

if there is a common intercept, and/or explanatory variables, in the model configurations. 

Explanatory variables governed by the threshold variable may be present in one or both configurations. If the variable were present in both, the shape of the relationship with y would be different in the two configurations. 

We set the minimum and maximum value of r to 20 and 80 % of the range of θ, thus not allowing a threshold to be estimated at the lowest or highest values of θ. 

We limited the effective degrees of freedom (edf) in models to avoid too smooth relationships, which would have limited ecological meaning. Edf was set to a maximum of four when running GAMs, and in tGAMs, the maximum edf was three for variables with a threshold and four for variables without a threshold. 

Details on selection of models for single indicators
The potential pressures and links to other indicators (and thereby other food web-model components), were identified a priori based on existing knowledge and plausible relationships (Fig. S2). While cod may additionally utilize stickleback as prey, we did not include this link in models as the BIAS data showed a negative correlation between the cod and stickleback time series, which would have had a disproportionally large and unrealistic effect.

Model diagnostics
Underlying assumptions were evaluated by examining plots of residuals versus fitted values (homoscedasticity) and autocorrelation function (ACF) plots (temporal independence). Autocorrelation at lags ≥ 4 years was ignored, as it was considered to have limited ecological relevance and be a relatively long time period compared to the length of the time series. We further used a Shapiro test to test for normality of residuals. For models meeting the previous criteria, we confirmed that the observed time series were well reproduced by the model.

Use of previous results to inform choice of covariates in tGAM analyses
For each of the ZPI, the climate and environmental variables ChlSummer, TempSummer and SalinWinter were included in tGAMs if included as covariates in the best GAM(s) or were the best single-pressure model in Otto et al. (2018). We included the two FI (of Sprat, Herring and Stickleback) that explained most of the variation in GAMs, or all three in the case all were included in the selected GAM.

The tGAMs at mid-trophic-level (Sprat, Herring and Stickleback indicators) included: the ZPI in question; the Cod indicator; fishing mortality (in the case of Sprat and Herring); TempSummer and SalinWinter – with species-specific moving average lag – if included in the best GAM(s) or if the variable was the best single-pressure model in Otto et al. (2018); and competitors (the other two mid-trophic indicators) if included in the best GAM(s) and there having a negative effect.

In the case of the Cod indicator, tGAMs included fishing mortality; the Sprat and Herring indicators; TempSummer_2-3yearsbefore  and SalinWinter_2-3yearsbefore if included in the best GAM(s) or were the best single-pressure model in Otto et al. (2018).  tGAMs would have included O2Cod_2-3yearsbefore if the variable had been included in the best GAM(s) or was the best single-pressure model in (Otto et al., 2018). This was however never the case.

Future scenarios
The coupled food-web indicators models were driven over the period 2012-2040 with future scenario simulation data that resulted from combining: four (in Bornholm Basin) or eight (in Gotland Basin) fishing pressure or size of fish stock scenarios, three nutrient load scenarios and two potential future climate projections, based on regional downscaling of two global circulation models using an intermediate global greenhouse gas emissions scenario (A1B).

Environmental and climate variables
Estimates of future environmental and climate variables were based on forecast model simulations using the coupled physical-biogeochemical model BALTSEM (Gustafsson, 2003; Gustafsson et al., 2012; Savchuk et al., 2012). BALTSEM is a time-dependent ecosystem model of the Baltic Sea, with high vertical resolution in thirteen basins that creates adequate horizontal resolution for food-web simulations. BALTSEM was calibrated using hydrographic, nutrient and phytoplankton data for the period 1970-2006 (Eilola et al., 2011; Savchuk et al., 2012). The nutrient load scenarios were: Reduction: all countries around the Baltic Sea adhering to the Baltic Sea Action Plan according to its 2013 revision (HELCOM, 2013a); Current: the same nutrient input as during 1997-2003 (HELCOM, 2015); Increase: all countries around the Baltic Sea increasing the intensity of agriculture production to the high livestock densities of Denmark (currently the highest nutrient load from farmland, Humborg et al., 2007). 

The climate drivers in model simulations were based on dynamically downscaled global climate simulations by a regional model (RCAO, Döscher et al., 2002; Meier et al., 2011). Runs with good performance for the Baltic Sea region from two global climate models, the ECHAM5/MPI-OM (Jungclaus et al., 2006; Roeckner et al., 2006, henceforth short ECHAM5) and HadCM3 (Gordon et al., 2000) were selected to create physical forcing for the BALTSEM model. Future greenhouse gas emissions corresponded to the intermediate A1B scenario (Nakicenovic and Swart, 2000). In use with these models, continued temperature increase and salinity decrease is projected for the Baltic Sea, but to different extent (Fig S3) making these climate projections suitable for testing sensitivity to climate parameters.

Fishing and fish stock variables
Different levels of fishing pressure formed scenarios when suitable models for fish indicators had been identified: High and low fishing mortality of cod (FCod at 0.6 or 0.3 – corresponding to FCod at previous upper level in the multi-species assessment and during previous management plan (EC 1098/2007; ICES, 2013b)), combined with high or low fishing mortality of clupeids (FSpr and FHer at FMSY level (FSpr = 0.26, FHer = 0.22), or at 0.5*FMSY (FSpr = 0.13, FHer = 0.11), as estimated by ICES (2015b)). 

We constructed time series for the future cod stock when no suitable Cod indicator model had been identified (i.e. in models for the Gotland Basin), as Cod was linked to indicators at other trophic levels. The four constructed cod time series were: a) extrapolation of the current trend, starting with the observed value in 2009 and from 2010 onwards adding the result of 1000 Monte Carlo simulations of the first-order-differentials to the previous year; b) reversal of current trend (as in a) but using first-order-differentials with reversed sign); c) the average cod biomass during 1980-1986 (a high cod stock situation) and d) the average during 2002-2008 (a low cod stock situation), where for the scenarios c) and d) a variation was added corresponding to a standard deviation of 25% of the mean in each respective period. These four cod scenarios were combined with high or low fishing mortality of clupeids, as above.

The Stickleback indicator influenced another indicator in the coupled Bornholm Basin model. We did not find any published work predicting stickleback stocks in the future, nor were we able to construct well-performing models for Stickleback. For the purpose of simulations, we constructed a time series extrapolating the observed trends. The constructed time series started with the observed value in 2009, and then we added to the previous year’s value the result of 1000 Monte Carlo simulations of the first-order-differentials of the observed data.
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Appendix II. Results

Model selection for individual components
A majority of final models were GAMs, but five were tGAMs (Table S1). The indicator Stickleback, which was originally considered for evaluation (Fig. S2), showed a poor performance generally and it was not possible to identify a meaningful model (from a statistical as well as an ecological point of view) when Stickleback was linked to any other indicator. Therefore we only used the Stickleback time series as a covariate in the one model where it influenced another indicator, but results are otherwise not presented.

Analysis of scenario simulations

Bornholm basin
Abundance ZPI – Abundance FI
Cod fisheries had a strong negative effect on Cod (Fig. S7). The cod fisheries effect cascaded on the Sprat indicator, but there was a marked interaction between cod and clupeid fisheries scenarios as well as climate change in the Sprat simulation results (Table S2, Fig. S6). Climate projections affected the Cod and TZA results, interacting with nutrient load in the latter case (Fig. S6, bottom panel)

Abundance ZPI – Size-based FI
LPF was negatively affected by higher cod fishing mortality, while SPF and TZA had lower values in the lower nutrient load scenarios (Fig. S7). The indicator values were overall higher under the HadCM3 model than ECHAM5.

Ratio ZPI – Abundance FI
With Sprat and RCC influencing each other, the results for the two indicators were qualitatively the same: Both indicators had lower values in the Increase nutrient load scenario, and higher values in the Current and Reduction scenarios, with less nutrients. There was however an interaction between effects of nutrient load and climate, with generally higher indicator values, but smaller differences between nutrient scenarios under the HadCM3 model (Fig. S8). Cod results were the same as in the Abundance ZPI – Abundance FI model.

Gotland basin
Abundance ZPI – Abundance FI
Cod stock size scenarios had strong direct effects on the Sprat indicator, with higher indicator values under the Low cod and Current trend scenarios (Table S3). The effects cascaded on the TZA indicator, which responded in the opposite direction, but effect sizes were small. Effects on TZA from nutrient load and climate were small as well, but there were marked interactions: TZA under the Current and Reduction nutrient load scenarios had similar values, also under the two climate models, whereas Increase led to high TZA values under ECHAM5, but gave low values under the HadCM3 model (Fig. S9).

Size-based ZPI – Abundance FI
Increasing clupeid fisheries from 0.5*FMSY to FMSY slightly reduced the Herring indicator, which in turn cascaded on MS that increased. Climate had small but noticeable effects: Herring had higher values, while MS had lower values, under ECHAM5 compared to the HadCM3 model (Fig. S10). Cod stock size scenarios had strong direct effects on the Sprat indicator (Table S3).

Ratio ZPI – Abundance FI
Cod stock size scenarios had strong direct effects on the Sprat indicator. The effects cascaded on RCC, but while effects had the same direction for Sprat and RCC in the Current trend, Reversed trend and High cod scenarios, the effects were different in the Low cod scenario: Direct effects on Sprat resulted in the highest values of the indicator (Fig. S11), but cascading effects on RCC resulted in the lowest values, in turn more pronounced under ECHAM5 compared to HadCM3.

The combination of Low cod and HadCM3 scenarios had indicator values (in the year 2035) projected at extremes (results not shown). The general patterns persisted also when excluding this year from the analysis.
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