Supplementary Material

Roles of CpcF and CpcG1 in Peroxiredoxin-Mediated Oxidative Stress Responses and Cellular Fitness in the Cyanobacterium *Synechocystis* sp. PCC 6803

Running Head: PBS regulation & cellular stress in cyanobacteria

Sookyung Oh¹ and Beronda L. Montgomery^{1,2,3*}

¹Department of Energy – Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA

²Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA

³Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA.

*For correspondence: E-mail: montg133@msu.edu

Supplemental Table 1. Primer sequences

Primer ID	Primer sequence	Purpose
F1-CPCF	GTTTACCCTTTAGCCGCATTGAT	Deletion of cpcF
R1-CPCF	CCCGTTGAATATGGCTCATGGTTTAGCCCCTG	Deletion of cpcF
F2-CPCF	GATGCTCGATGAGTTTTTCTAAGCTTTTAGAGCACCTC	Deletion of cpcF
R2-CPCF	GGGAGCCAAGCTAGAATCAATG	Deletion of cpcF
		Deletion of cpcF, Confirmation of deletion
F3-CPCF	CAGGGGCTAAACCATGAGCCATATTCAACGGG	of cpcF
		Deletion of cpcF, Confirmation of deletion
R3-CPCF	GAGGTGCTCTAAAAGCTTAGAAAAACTCATCGAGCATC	of cpcF
F-CPCF	TCTTGTTCTTCCTGGGGTAGG	Confirmation of deletion of cpcF
R-CPCF	AGACTCGGCAGCCAAATTAGT	Confirmation of deletion of cpcF
F1-CPCG1	GATTTTATTACCTGCTGGGGGAAG	Deletion of cpcG1
R1-CPCG1	CCCGTTGAATATGGCTCATGTGTAAACCTCCG	Deletion of cpcG1
F2-CPCG1	GATGCTCGATGAGTTTTTCTAAGCACTAAGGTCAGAG	Deletion of cpcG1
R2-CPCG1	GCCAAACACGCCATAATCACTAA	Deletion of cpcG1
		Deletion of cpcG1, Confirmation of
F3-CPCG1	CGGAGGTTTACACATGAGCCATATTCAACGGG	deletion of cpcG1
13 61 601	CONSTITUTIONSCONTINUES	deletion of epeci
		Deletion of cpcG1, Confirmation of
R3-CPCG1	CTCTGACCTTAGTGCTTAGAAAAACTCATCGAGCATC	deletion of cpcG1
F-CPCG1	CTCCAGCAGCGATATGGATAA	Confirmation of deletion of cpcG1
R-CPCG1	GTACCGGGGAGATTTGATGTT	Confirmation of deletion of cpcG1

Supplemental Figure 1. Accumulation of OCP protein in WT and phycobilisome-deficient $\Delta cpcF$ and $\Delta cpcGI$ strains. Immunoblot analysis was performed using anti-OCP antibody (top panel) or anti-RbcL antibody (bottom panel), with representative blots shown. Total soluble proteins were extracted from wild-type (WT), $\Delta cpcF$ and $\Delta cpcGI$ strains (two independent mutant strains for each $\Delta cpcF$ and $\Delta cpcGI$ included, as well as a $\Delta cpcGI$ strain that is segregating [seg.] a WT cpcGI gene and, thus, is similar to WT) grown under 10 μ mol m⁻² s⁻¹ for 5 days or 7 days of white light in BG-11/HEPES medium. 2.5 μ g of proteins were resolved on 10 % (w/v) polyacrylamide gels by SDS-PAGE electrophoresis prior to immunoblotting. Arrowheads indicated OCP or RbcL proteins.

Supplemental Figure 2. Growth of *Fremyella diplosiphon* Δ*cpcF* mutants compared to wild-type (WT) and comparative accumulation of OCP protein in *Synechocystis* and *F. diplosiphon* Δ*cpcF* mutants and WT. (A) Liquid culture of the cells grown under 10 μmol m⁻² s⁻¹ of white light for six days. (B) *F. diplosiphon* WT and Δ*cpcF* strains were grown under 10 μmol m⁻² s⁻¹ of white light at 28 °C in BG-11/HEPES medium for 3 days. Soluble proteins were extracted using CelLytic B Bacterial Cell Lysis/Extraction reagent (Sigma) with 30 mg of glass beads (Sigma) as previously described (Agostoni et al., 2013). Immunoblot analysis was performed using anti-OCP antibody (top panel; 1:1000 dilution) or anti-RbcL antibody (bottom panel; 1:5000 dilution), with representative blots shown. 2.5 μg of *Synechocystis* and 30 μg of *F. diplosiphon* proteins were resolved on 12% (OCP) or 10% (RbcL) polyacrylamide gels by SDS-PAGE electrophoresis prior to immunoblotting. Arrowheads indicated OCP or RbcL proteins.

REFERENCES

Agostoni, M., Koestler, B. J., Waters, C. M., Williams, B. L., and Montgomery, B. L. (2013). Occurrence of cyclic di-GMP-modulating output domains in cyanobacteria: An illuminating perspective. *mBio* 4, e00451-13.