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1. Supplementary Figures and Tables 
1.1 Supplementary Figures 
 

 
Figure S1. Detailed schematic of TFSv.2 structure. * denotes processes added to the 
new model version, ^ denotes alterations to the original model. Woody biomass 
includes both stem and coarse roots. 
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Figure S2. Probability of mortality under different wood densities, growth rates and 
D/Dmax. Example values - low growth rate: -6 mm yr-1, high growth rate: 25 mm yr-1, 
low D/Dmax: 0.11, high D/Dmax: 1, low wood density: 0.2 g cm-3, high wood density: 
0.9 g cm-3. 
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Figure S3. Relationship between LMA (g m-2 from Fyllas et al., 2009) and maximum 
diameter (Dmax, cm, calculated from ForestPlots.net data using the method of King et 
al., 2006). a) Scatterplot of LMA and Dmax (log scale) with linear regression line (p = 
0.0002, R2 = 0.03). b) Histograms of Dmax data binned by LMA. c) Log-normal 
distributions for each LMA bin parameterized from the data and used to apply a Dmax 
value to simulated trees based on LMA.  
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Figure S4. Distributions of wood density (WD, g cm-3, top left quadrant), leaf mass 
per area (LMA, g m-2, top right quadrant), leaf nitrogen (N, mg g-1, bottom left 
quadrant) and leaf phosphorus (P, mg g-1, bottom right quadrant) for the four study 
plots. Data from Fyllas et al. (2009) and the GEM-TRAIT project. 
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Figure S5. Trait distributions for model experiments. a-d) Distributions split by N to 
produce ‘fast’ and ‘slow’ leaf trait distributions. e-h) Distributions split by WD to 
produce high and low WD trait distributions. 
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Figure S6. Allocation of NPP between leaves (cyan), wood (blue) and fine roots 
(magenta) from observations (o) and simulations (s) for each plot. 
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Figure S7. Observed patterns of stem number and basal area (BA) over time for TAM 
and ALP clusters. 
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Figure S8. Distributions of stem (top row) and biomass (bottom row) mortality rates 

from observations (red, mortality rates taken from all census intervals of all plots 

within the local cluster) and simulations (blue dash, mortality rates from each year of 

the final 100 years of simulations). Median rate from observations (red line) and 

simulations (blue line) are shown. All units are % yr-1.  
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Figure S9. Distributions of annual number of recruits (green) and dead trees (blue) 
from the last 100 years of simulations from a single model run. 
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Figure S10. Distributions of above ground woody productivity from observations 

(red, rates taken from all census intervals of all plots within the local cluster) and 

simulations (blue dash, rates from each year of the final 100 years of simulations). 

Median rate from observations (red line) and simulations (blue line) are shown. All 

units are Mg C ha-1 yr-1.  
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Figure S11. Growth trajectories of trees over time in a single 20 x 20 m subplot 
coloured by WD. Open circles – tree present in the top of the canopy, closed circles – 
tree present in subcanopy. The largest tree in the subplot dies in simulation year 2220. 
Then, the existing trees that were in the subcanopy move to the canopy and receive 
more light. Of those of a similar size, the lower WD trees grow fastest. Low wood 
density trees recruit less often in later simulation years due to a higher mortality rate 
and consequently lower presence in the adult population. 
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Figure S12. Change in community weighted mean trait values during the experimental 
simulations. Column 1 and 3 – ALP climate, column 2 and 4 – TAM climate, column 1 and 2 
-  ‘fast’ (blue) and ‘slow’ (green) traits distributions with split based on leaf N, column 3 and 
4 – high (magenta) and low (cyan) WD distributions. Polygons show standard deviation 
ranges from 10 model runs.   
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Figure S13. Histogram of simulated soil moisture indices from ALP-01 (blue) and 
TAM-05 (green), based on daily values from the years 1983-2012. Low values have 
more inhibition of photosynthesis. 
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Figure S14. Relationship between simulated stem density and mean tree diameter 
averaged over the last 100 years of experimental simulations (8 trait x climate 
combinations, 10 runs of each combination). 
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Figure S15. WD shifts from one simulation of each plot (blue - first year, green - last year of 
simulation) with mean (solid line) and standard deviation (dashed line). 
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Figure S16. Distribution of number of dead stems from 1000 randomisations based on Pm 
calculated from the outputs from final simulation year and original (blue) and reduced (green) 
WD. 
 
  

ALP-01

Number dead stems

F
re

q
ue

n
cy

0 5 10 15

0
5

0
1

0
0

1
50

2
00

ALP-30

Number dead stems

F
re

q
ue

n
cy

0 5 10 15

0
5

0
1

0
0

1
50

2
0

0 Original WD
WD reduced by 0.091

TAM-05

Number dead stems

F
re

qu
e

n
cy

0 5 10 15

0
5

0
10

0
1

50

TAM-06

Number dead stems

F
re

qu
e

n
cy

0 5 10 15

0
5

0
1

0
0

1
5

0



18 
 

1.2 Supplementary Tables 
 
Table S1. Details of additional forest dynamics plots in Allpahuayo and Tambopata.  

Plot Code Lat/Long Number of 

censuses 

First census 

date 

Last census 

date 

ALP-02 -3.9/-73.4 8 11/1990 03/2011 

TAM-01 -12.8/-69.3 11 10/1983 09/2014 

TAM-02 -12.8/-69.3 13 11/1979 09/2014 

TAM-04 -12.8/-69.3 8 09/1983 09/2014 

TAM-07 -12.8/-69.3 10 10/1983 09/2014 

TAM-08 -12.8/-69.3 6 07/2001 09/2014 

TAM-09 -12.8/-69.3 5 09/2010 09/2014 
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Table S2. Parameter values for equations presented in the main text. 
Parameter Definition Equation Value Reference 
β0 Mortality regression parameter 1 -3.55 This 

study 
β1 Mortality regression parameter 1 -1.3 This 

study 
β2 Mortality regression parameter 1 -0.045 This 

study 
β3 Mortality regression parameter 1 0.26 This 

study 
β4 Mortality regression parameter 1 0.106 This 

study 
μ Location parameter of log-

normal distribution to select 
Dmax value from LMA 

 3.587; 3.624; 3.732; 
3.818; 3.839 (for 
LMA < 80, 80-90, 
90-100, 100-110, 
>110 respectively)  

This 
study 

σ Scale parameter of log-normal 
distribution to select Dmax value 
from LMA 

 0.463; 0.397; 0.430; 
0.376; 0.368 (for 
LMA < 80, 80-90, 
90-100, 100-110, 
>110 respectively) 

This 
study 

a Parameter for estimation of 
sapling number 

2 0.25 Fyllas et 
al, 2010; 
Dupuy & 
Chazdon,, 
2006. 

b Parameter for estimation of 
sapling number 

2 -0.5 Fyllas et 
al, 2010; 
this study 
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Table S3. Full ANOVA results testing the importance of input traits distribution and climate 
on forest carbon cycling and structure variables. 

 Fast vs slow traits 
 

High wd vs low wd 
 

Variable Driver df Sum Sq Mean Sq F P ω2 Sum Sq Mean Sq F P ω2 

GPP 

Traits 1 0.84 0.84 1.015 0.32  5.65 5.65 9.6068 0.004 0.007 
Climate 1 566.52 566.52 687.5 < 0.0001 0.94 683.73 683.73 1161.9 < 0.0001 0.95 
Traits x 
Climate 1 3.46 3.46 4.2 0.048 0.004 8.81 8.81 15.0 0.0004 0.01 
Residual 36 29.67 0.82    21.18 0.59    

NPP 

Traits 1 11.278 11.278 214.4 < 0.0001 0.13 1.707 1.707 49.6071 < 0.0001 0.02 
Climate 1 69.548 69.548 1322.1 < 0.0001 0.86 85.221 85.221 2477.2 < 0.0001 0.96 
Traits x 
Climate 1 0.207 0.207 3.9257 0.055  0.051 0.051 1.4722 0.2  
Residual 36 1.894 0.053    1.238 0.034    

R 

Traits 1 5.972 5.972 9.4734 < 0.0001 0.02 13.572 13.572 29.532 < 0.0001 0.04 
Climate 1 239.078 239.078 379.3 < 0.0001 0.89 286.173 286.173 622.703 < 0.0001 0.88 
Traits x 
Climate 1 1.976 1.976 3.135 0.09  7.52 7.52 16.364 < 0.0001 0.02 
Residual 36 22.693 0.63    16.544 0.46    

Stems 

Traits 1 12895 12895 35.9359 < 0.0001 0.05 28 28 0.0918 0.8  
Climate 1 214845 214845 598.7 < 0.0001 0.89 216411 216411 718.9 < 0.0001 0.95 
Traits x 
Climate 1 303 303 0.8458 0.4  1 1 0.0047 0.9  
Residual 36 12918 359    10837 301    

BA 

Traits 1 16.13 16.1303 13.2942 0.0008 0.20 157.511 157.511 158.566 < 0.0001 0.68 
Climate 1 13.95 13.9495 11.4969 0.002 0.17 33.3 33.3 33.5228 < 0.0001 0.14 
Traits x 
Climate 1 0.043 0.0427 0.0352 0.9  2.848 2.848 2.8667 0.1  
Residual 36 43.68 1.2133    35.76 0.993    

AGB 

Traits 1 11089 11089 40.0252 < 0.0001 0.19 11060 11060 51.6489 < 0.0001 0.17 
Climate 1 33414 33414 120.6 < 0.0001 0.59 43665 43665 203.9 < 0.0001 0.69 
Traits x 
Climate 1 960 960 3.4637 0.07  93 93 0.4325 0.5  
Residual 36 9974 277    7709 214    

Woody 
Productivity 

Traits 1 0.5631 0.5631 8.8659 0.005 0.02 5.6217 5.6217 
142.363

9 < 0.0001 0.16 
Climate 1 21.1891 21.1891 333.6 < 0.0001 0.88 27.3958 27.3958 693.8 < 0.0001 0.79 
Traits x 
Climate 1 0.0113 0.0113 0.1775 0.7  0.0578 0.0578 1.4639 0.2  
Residual 36 2.2865 0.0635    1.4216 0.0395    

LAI 

Traits 1 0.079 0.079 3.2535 0.08  2.4201 2.4201 205.343 < 0.0001 0.21 
Climate 1 7.7324 7.7324 318.3 < 0.0001 0.88 8.6647 8.6647 735.178 < 0.0001 0.75 
Traits x 
Climate 1 0.0132 0.0132 0.5452 0.5  0.0245 0.0245 2.077 0.2  
Residual 36 0.8744 0.0243    0.4243 0.0118    

pR 

Traits 1 0.09443 0.094434 6.4335 0.02 0.12 1.14002 1.14002 157.7 < 0.0001 0.79 
Climate 1 0.05013 0.050129 3.4151 0.07  0.01255 0.01255 1.7358 0.2 . 
Traits x 
Climate 1 0.00006 0.000057 0.0039 0.9  0.01408 0.01408 1.9474 0.2  
Residual 36 0.52843 0.014678    0.26022 0.00723    

pM 

Traits 1 0.12 0.120774 15.8214 0.0003 0.26 1.27314 1.27314 198.8 < 0.0001 0.84 
Climate 1 0.0266 0.026599 3.4845 0.07  0.00239 0.00239 0.3735 0.5  
Traits x 
Climate 1 0.0129 0.012915 1.6919 0.2  0.00025 0.00025 0.0392 0.8  
Residual 36 0.275 0.007634    0.23055 0.0064    
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Table S4. Results from two sample T-tests examining shifts in mean trait values during 
simulations based on community weighted mean (cwm) and basal area weighted mean 
(BAwm) of the first and last simulation year for two model experiments using opposing traits 
distributions and two climates. 
 

Trait (units, 
mean 
weighting) 

Climate 
Applied 

Trait 
distribution 

Year 1 
mean 

Year 500 
mean T df p 

WD (g cm-3, 
cwm) 

ALP 
Fast 0.558 0.69 -7.0 9.1 <0.0001 
Slow 0.631 0.751 -7.4 9.5 <0.0001 

TAM 
Fast 0.565 0.711 -10.2 9.6 <0.0001 
Slow 0.630 0.729 -12.2 9.6 <0.0001 

WD (g cm-3, 
BAwm) 

ALP 
Fast 0.556 0.658 -7.0 9.1 <0.0001 
Slow 0.628 0.725 -7.7 9.7 <0.0001 

TAM 
Fast 0.563 0.677 -10.7 10.2 <0.0001 
Slow 0.627 0.708 -11.1 9.7 <0.0001 

WD (g cm-3, 
cwm) 

ALP 
Low WD 0.477 0.533 -8.9 10.6 <0.0001 
High WD 0.720 0.765 -6.9 9.1 <0.0001 

TAM 
Low WD 0.476 0.526 -6.4 9.3 <0.0001 
High WD 0.715 0.758 -9.2 11.4 <0.0001 

WD (g cm-3, 
BAwm) 

ALP 
Low WD 0.475 0.524 -8.7 10.9 <0.0001 
High WD 0.718 0.754 -5.8 9.1 0.0003 

TAM 
Low WD 0.474 0.512 -7.2 9.6 <0.0001 
High WD 0.714 0.753 -8.0 11.1 <0.0001 

LMA (g m-2, 
cwm) 

ALP 
Fast 99.4 87.1 8.2 9.5 <0.0001 
Slow 120.1 117.3 1.8 12.0 0.1 

TAM 
Fast 98.9 85.0 13.6 14.2 <0.0001 
Slow 121.6 115.9 2.6 9.8 0.03 

LMA (g m-2, 
BAwm) 

ALP 
Fast 99.0 94.1 3.5 9.6 0.006 
Slow 119.2 122.7 -2.0 11.2 0.07 

TAM 
Fast 98.6 91.7 7.4 15.2 <0.0001 
Slow 120.8 120.0 0.4 9.6 0.7 

LMA (g m-2, 
cwm) 

ALP 
Low WD 108.7 101.9 4.1 10.8 0.002 
High WD 108.1 104.6 1.8 9.3 0.1 

TAM 
Low WD 109.3 101.9 4.7 9.5 0.0009 
High WD 105.5 102.8 1.9 11.8 0.09 

LMA (g m-2, 
BAwm) 

ALP 
Low WD 108.0 109.2 -0.7 10.9 0.5 
High WD 107.3 111.3 -2.2 9.4 0.05 

TAM 
Low WD 107.6 106.9 0.6 9.5 0.6 
High WD 104.7 107.3 -1.7 11.5 0.1 

Leaf N (mg g-

1, cwm) 

ALP 
Fast 25.2 25.8 -1.9 10.3 0.09 
Slow 16.6 16.0 3.5 9.3 0.006 

TAM 
Fast 25.4 26.1 -3.1 10.5 0.01 
Slow 16.5 16.2 2.6 9.7 0.03 

Leaf N (mg g-

1, BAwm) 

ALP 
Fast 25.2 25.5 -0.9 10.8 0.4 
Slow 16.6 16.3 2.3 9.3 0.049 

TAM 
Fast 25.4 25.9 -2.6 11.5 0.03 
Slow 16.5 16.3 1.5 9.4 0.2 

Leaf N (mg g-

1, cwm) 

ALP 
Low WD 22.0 21.5 0.9 9.1 0.4 
High WD 21.6 19.4 4.8 9.1 0.0009 

TAM 
Low WD 21.9 21.7 0.4 10.7 0.7 
High WD 22.5 21.0 3.3 12.0 0.007 

Leaf N (mg g-

1, BAwm) 

ALP 
Low WD 22.1 21.4 1.4 9.2 0.2 
High WD 21.7 19.8 4.6 9.1 0.001 

TAM 
Low WD 22.0 21.7 0.7 11.1 0.5 
High WD 22.6 21.1 3.5 12.6 0.004 

Leaf P (mg g-

1, cwm) 

ALP 
Fast 1.34 1.29 1.0 9.4 0.3 
Slow 0.90 0.85 3.0 9.5 0.01 

TAM 
Fast 1.33 1.41 -2.2 9.7 0.06 
Slow 0.88 0.79 5.3 11.0 0.0002 

Leaf P (mg g-

1, BAwm) 
ALP 

Fast 1.35 1.29 2.0 9.9 0.07 
Slow 0.90 0.85 3.1 9.2 0.01 

TAM Fast 1.34 1.39 -1.7 10.0 0.1 



22 
 

Slow 0.89 0.79 5.9 11.6 <0.0001 

Leaf P (mg g-

1, cwm) 

ALP 
Low WD 1.18 1.13 1.2 9.0 0.3 
High WD 1.12 0.99 4.1 9.0 0.003 

TAM 
Low WD 1.17 1.11 2.0 10.1 0.07 
High WD 1.17 1.07 3.0 13.2 0.01 

Leaf P (mg g-

1, BAwm) 

ALP 
Low WD 1.20 1.12 2.0 9.0 0.08 
High WD 1.14 1.03 2.8 9.0 0.02 

TAM 
Low WD 1.18 1.12 2.2 10.5 0.048 
High WD 1.19 1.09 2.9 12.8 0.01 
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2. Supplementary Methods  
 
Methods S1 – Data uncertainty and traits data collection 
 
Error statistics of the field measurements are presented as standard error. Respiration 
terms of the carbon cycling measurements are associated with large uncertainties due 
to scaling (e.g. up-scaling leaf respiration measurements to the total leaf area of the 
plot, stem respiration measurements to the total stem surface area accounting for stem 
growth rates), and are therefore conservative estimates of errors for the Ra terms were 
made (see Appendix S1 of Malhi et al. (2015) for further details). The close match 
between GPP estimated from GEM measurements and flux-towers gives confidence 
in the method (Malhi et al. 2015). The standard errors from the inventory plot data are 
based on variation between censuses. 
 
Functional trait data (LMA, N, P, WD) were taken from Fyllas et al., (2009) and the 
GEM-TRAIT project (Supplementary Figure S1). The traits data from Fyllas et al., 
(2009) were collected from 21, 13, 24, and 28 trees for ALP-01, ALP-30, TAM-05, 
and TAM-06, respectively, between 2001 and 2005 (Patiño et al., 2009). Data from 
the GEM-TRAIT project were collected from 29, 26, 62, and 51 trees for ALP-01, 
ALP-30, TAM-05, and TAM-06, respectively. Sampling strategy for data from Fyllas 
et al., (2009) was based on selecting up to six ‘climbable’ trees spread throughout the 
plot, and sampling this tree and crowns accessed from this tree. The GEM-TRAIT 
project sampled all species that make up 80% of the plot basal area. As stem WD data 
were not available for GEM-TRAIT samples, we used values taken from the Global 
Wood Density Database (Chave et al., 2009, Zanne et al., 2009). All leaf traits were 
measured from branches exposed to full sun.  
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Methods S2 - Model Improvements 
 
Light competition Tree canopy layer was previously defined using the perfect 
plasticity approximation (PPA, Purves et al., 2007) whereby all trees in the plot are 
ordered by height, and crown areas are summed, beginning with the tallest 
individuals. Once the cumulative crown area equals the ground area of the plot, the 
individuals so far included are assigned to the top canopy layer (layer 1), and all 
shorter trees are assigned to the subcanopy (layer 2). PPA is designed for use in 
temperate forest where typically there is a single canopy layer, with smaller trees in 
shade. In contrast, tropical forest canopy layers are heterogeneous and comprise 
multiple canopy layers (e.g., between one and six canopy layers were found in 45 
canopy samples in Costa Rica, Clark et al., 2008). Hence, we utilized an alternative 
formulation of the PPA devised by Bolhman & Pacala (2012). Unlike the original 
PPA formulation, Bohlman & Pacala (2012) continued to cumulatively sum crown 
area with trees in the second layer until the ground area was again equaled, with such 
trees assigned to layer 2, and subsequently continues again to fill a third canopy layer. 
This is continued until all trees have been assigned a canopy layer. A further 
development to the canopy structure was made by performing the PPA algorithm in 
20 x 20 m subplots rather than the entire plot. This subplot size was selected for two 
reasons. First, the 400 m area is approximately the area of the largest tree crowns in 
tropical forests, and second, forest inventory data is often recorded with this size 
subplot so validation of the method is possible. Working at the subplot rather than 
whole plot level allows for within plot canopy height heterogeneity and prevents the 
large trees in the plot from influencing the light received by all other trees in the plot. 
The tree height boundaries (Z* in Purves et al., 2007) between canopy layers can then 
be different in each subplot. Further, using the original PPA at the whole plot level 
commonly produced only one canopy layer (i.e., all trees in the top layer and 
receiving full light) which is not realistic for a tropical forest. Light interception is 
based on canopy layer; trees in the top layer receive full incoming radiation, light 
received by trees in the second layer has travelled through one canopy layer before 
reaching the tree crown, light received by trees in the third layer has travelled through 
two canopy layers before reaching the tree crown etc. For the purposes of light 
interception, the LAI of canopies above a lower layer tree crown are set to 2, 
following observations from Clark et al., (2008). 
 
Tissue turnover When running TFS v.1 with annual feedbacks, leaf biomass pool 
size based on leaf litter fall and allocation to leaf biomass, individual leaf area index 
(LAI) was found to shift outside of typical bounds (maximum LAI of 8 recorded from 
five species of tree in Panama, Kitajima et al., 2005 and mean LAI of 2 in canopy 
strata from 45 vertical canopy samples in Costa Rica, Clark et al., 2008), with values 
reaching 30 for some individuals within 3 years of simulation. This behavior is due to 
the use of the assigned plant trait LMA in determining the total leaf surface area (LA) 
of an individual. LMA is used to calculate LA from leaf biomass. For an equal leaf 
biomass, an individual with low LMA will have a larger LA than one with high LMA. 
Assuming static leaf lifetime (LL, days) and NPP allocation across all individuals, as 
leaf biomass increases the LA, and hence LAI of low LMA individuals reaches 
unrealistically high values. To counter this we introduce into the model a known 
tradeoff between LMA and LL using data from Wright et al., (2004), whereby LL is 
shorter for trees with low LMA and longer for trees with high LMA.  
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𝐿𝐿 =  30.4 × 10(ଵ.ଵଵ×୪୭୥(௅ெ஺)ିଵ.ଷ)     Equation S1 
 
This reduces the large build up of leaf area for low LMA individuals and enhances the 
return on investment for high LMA individuals, an important ecological trade-off.  
 
A minor change to branch retention time (𝜏௕௥, days) was made by applying a 0.33 % 
loss per year of stem biomass, following field estimates of approx. 1 Mg C ha-1 yr-1 
branch fall (Chambers et al., 2001). 
 

𝜏௕௥ = ቀ
ଵ଴଴

଴.ଷଷ
ቁ × 365       Equation S2 

 
Biomass pools were updated annually, by addition of the years NPP of the organ and 
subtraction of losses (e.g. leaf fall, fine root turnover or branch loss) to the previous 
years’ value. All allometries were reversed to determine the plant dimensions from 
the updated biomass values. In the case of diameter and height from stem biomass, a 
Newton-Raphson iterative solver was used to determine the two unknowns.  
 
Subcanopy alterations Individuals below the first canopy layer (subcanopy trees) 
showed very low growth. To improve this, two changes were made to processes for 
subcanopy trees. First, the LL of trees in shade is known to be longer than that of trees 
in full light. Hence, we extended the LL of subcanopy trees following a relationship 
based on data from Lowman, 1992; Miyaji et al., 1997; Sterck, 1999; Reich et al., 
2004; Lusk & Corcuera, 2011; and Kitajima et al., 2013, Supporting Information 
Methods Figure 1, Equation S3.  
 

 
Supporting Methods 2 Figure 1. Leaf lifetime of plants of the same species growing 
under high light conditions and under low light conditions. Grey dashed line: y = x. 
Red solid line: linear regression model y = 190 + 1.54x. Data from 60 observations 
from Lowman, 1992; Miyaji et al., 1997; Sterck, 1999; Reich et al., 2004; Lusk & 
Corcuera, 2011; and Kitajima et al., 2013. Each data point is a species. 
 
LLs = 190 + 1.54LL       Equation S3 
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Where LLs is the leaf lifespan of a tree in the shade, and LL is the originally assigned 
LL (based on the relationship with LMA (Equation S1). 
 
Second, leaf respiration was altered. Leaf respiration rate (RL, μmol m-2 s-1) is 
typically modeled as a fraction of Vcmax. In TFS v.1, Equation S4 was used to 
estimate leaf respiration rate. 
 
𝑅௅ = 𝑓 × 𝑉𝑐௠௔௫         Equation S4 
 
where the parameter f = 0.015. However, subcanopy trees with limited light rarely 
meet the maximum rate of photosynthesis, and have been shown to have lower rates 
of respiration (Weerasinghe et al., 2014). While the exact nature of the relationship 
between Vcmax and leaf respiration at different light levels is not well quantified, we 
reduced the parameter f to 0.01 for trees in layer 2 and 0.005 for trees in layer 3 and 
below (top of canopy trees use the original f). 
 
Other minor changes were made. At initialization, leaf biomass was determined by 
the aboveground woody biomass based allometry of Yamakura et al., 1986, which 
gave a similar pattern to other published allometric equations for leaf biomass 
(Equation S5).  
 
𝐵௅ = 9.146 × 10ିଶ × 𝐵ௌ

଴.଻ଶ଺଺     Equation S5 
 
Crown area was determined by an allometric equation based on data from Tambopata, 
Peru, one of the study forests used in this analysis (Goodman, unpublished). Root 
respiration in TFS v.1 was equal to leaf respiration. This somewhat overestimated 
root respiration and here we set root respiration equal to leaf respiration x 0.6. 
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Methods S3 – Parameterization and model selection for probability of mortality 
 
The equation for probability of mortality (Pm) was parameterized from data from 69 
forest plots located in the western Amazon from the RAINFOR ForestPlots.net 
database (Lopez-Gonzalez et al., 2011). We used data for all individual trees present 
(alive or dead) in at least three censuses and for which a Dmax value was available. 
The model considered the effect of wood density (WD, g cm-3), diameter growth rate 
(Gr, cm yr-1) and D relative to maximum diameter (D/Dmax). The diameter growth rate 
for a tree was calculated from the census interval preceding the census interval after 
which the tree was defined as alive or dead, following Chao et al. (2008).  
 
The logistic model of the following form was used: 
 
𝑃௠ = 1

(1 + 𝑒ି(௞))ൗ                  Equation S6 

 
where k represents the predictors of the logistic model. Models using all possible 
combinations of the three predictors were compared to determine the model form with 
the most support from the data (Table S3.1).  
 
The model was parameterized using simulated annealing. Simulated annealing is an 
iterative parameter estimation technique mimicking the process of cooling of a 
crystal. The minimal internal energy state of the solid crystal is the one where its 
atoms are arranged in a perfectly regular grid. Sufficiently slow cooling with the 
possibility to escape non-regular confirmations is expected to lead to such a near 
perfect final grid – and the configuration found will be the minimum energy 
configuration. The algorithm is as follows. We want to maximise the log-likelihood of 
the mortality model with respect to the model parameters, or i.e. minimize (-1)*log-
likelihood. (-1)*log-likelihood is thus the analogue of the internal energy state of the 
solid. An initial temperature T0 is chosen and temperature decreased each iteration 
according to 𝑇௡ = 𝑇଴ ∙ 𝛾௡. Each step model parameter values are altered randomly 
with the size of the adjustment decreasing as the process continues.  A new value of (-
1)*log-likelihood is then calculated given the forest inventory dataset. If the value of 
(-1)*log likelihood has decreased, the new parameter values are kept for the next 
iteration. If it has not decreased the new values are possibly nonetheless retained with 

the small probability 𝑝 = exp (−
ா௡௘௪ିா௢௟

௝∙்
) where j is a constant. This aims to permit 

to escape local minima. The constants of the simulated annealing algorithm were: T0 
= 10; γ = 0.999995; number of iterations = 400000; j = 1; s = 1.2. The start value of 
all parameters was 1. 
 
The log-likelihood function for a mortality process with mortality data X=(x1,…,xN) 
for N trees, a sequence of zeros (when the tree is dead) and ones (when the tree is 
alive), is similar to that used by Lines et al. (2010) and Aubry-Kientz et al. (2013):  
 

𝑙(𝑋|𝑀) = ∑ln ൜
1 − 𝑃(𝑚, 𝑖) 𝑖𝑓 𝑡𝑟𝑒𝑒 𝑖 𝑠𝑢𝑟𝑣𝑖𝑣𝑒𝑑

𝑃(𝑚, 𝑖)  𝑖𝑓 𝑡𝑟𝑒𝑒 𝑖 𝑑𝑖𝑒𝑑
                          Equation S7 
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Here P(m,i) is the probability of death of tree i during the period considered given 
model parameters m. The likelihood function is (𝑋|𝑚) = ൫ே

௞
൯Π௜ୀଵ

ே ൫1 −

𝑃(𝑚, 𝑖)൯
௫೔

𝑃(𝑚, 𝑖)ଵି௫೔ . 
 
Models with all possible combinations of predictors were compared using AIC. The 
best model was composed of all three predictor variables, with WD the best single 
predictor, and WD and Gr the best of the models with two predictors. Interestingly, 
Gr performed very poorly as a single predictor, likely because both high and low 
growth rates can be indicative of high mortality, where fast growing trees have short 
lifespans, and slow growing trees may be suppressed and/or undergoing disease or 
senescence. 
 
To assess error in the parameter variables of the full model, the parameter estimation 
procedure was bootstrapped 10 times, and the standard deviation of the parameter 
estimates was calculated from these 10 replicates. Parameter values and standard 
deviations are shown in Table S3.2. 
 
Table S3.1 Model selection for estimation of probability of mortality. K – number of 
parameters, AIC – Akaike Information Criterion, ∆AIC, difference in AIC from the 
minimum AIC model. 

Model (k) K Log 
Likelihood 

AIC ∆AIC 

β0 + β1WD + β2Gr + β3(D/Dmax) + β4(D/Dmax )2  5 -16825.73 33661.46 0 
β0 + β1WD + β2Gr 3 -16847.48 33700.96 39.5 
β0 + β1WD + β3(D/Dmax) + β4(D/Dmax )2 4 -16865.93 33739.86 78.4 
β0 + β2Gr + β3(D/Dmax) + β4(D/Dmax )2  4 -16875.36 33758.72 97.26 
β0 + β1WD 2 -16883.76 33771.52 110.06 
β0 + β3(D/Dmax) + β4(D/Dmax )2  3 -16904.16 33814.32 152.86 
β0 + β2Gr 2 -23704.65 47413.3 13751.84 
β0 1 -16922.8 33847.58 186.12 

 
Table S3.2 Parameter estimates and standard deviation from 10 bootstraps. 

Parameter Value Standard Deviation 
β0 -3.55 0.014 
β1 -1.3 0.017 
β2 -0.045 0.00065 
β3 0.26 0.025 
β4 0.106 0.016 
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