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Macrotribology  

 

FIGURE S1 | Friction coefficient vs sliding distance measured in air and hexadecane 

under a load of 5 N and at 25 °C. 

 

FIGURE S2 | Friction coefficient as a function of sliding distance for three stainless steel 

balls sliding on a titanium surface in 1 mol % mixtures of IL in hexadecane. Sliding was 

carried out under 5 N of normal load and a temperature of 25 °C. 
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FIGURE S3 | Friction coefficient as a function of velocity for three stainless steel balls 

sliding on a titanium surface in hexadecane (black circles) and P6,6,6,14 TFSI (blue diamonds). 

The dashed line shows the velocity at which the other experiments were carried out. Sliding 

was carried out under 5 N of normal load and a temperature of 60 °C. 

 

Calculation of Hertzian Contact Stress 

The effective Young’s modulus Ew can be calculated by: 
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Where �	, �
 are the elastic moduli and �	, �
 are the Poisson’s ratios associated with 

each body. 

Contact area radius is given by: 
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Where � is the radius of the sphere. � is the applied load. 

Contact stress: 
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The parameters used: 

Titania: � = 230 GPa, � = 0.28 

Stainless Steel: � = 200 GPa, � = 0.3 



Macrotribology test: 

� = 5 N, ���� � 0.5	� 
 

� = 10 nN, ���� = 0.6 GPa 

 

In the nanotribology tests the exact dimensions and geometry of the tip are uncertain 

and subject to change. The contact pressures are significantly higher: 

� = 50 nN, ���� = 11.8 GPa 

� = 200 nN, ���� = 18.7 GPa 

 

Hamrock and Dowson model 

Using the Hamrock and Dowson model the central film thickness, ℎ", can be calculated 

by the following equation (Stachowiak and Batchelor, 2005): 
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where 
 is the contact area radius from eq(2), & is the sliding velocity, '( is the 

viscosity of the lubricant at ambient pressure, �� is the effect Young’s modulus from eq(1), , is the pressure-viscosity coefficient, � is the applied load, and 3 is the ellipticity parameter. 3 = 1 for point contact. The pressure – viscosity coefficient of hexadecane varies from 11.6 to 

13.2, and average of 12.5 is used here (Pensado et al., 2008; Paredes et al., 2012). For the 

pure ILs used in this study, the pressure-viscosity coefficient was not found in the literature. 

According to previous studies, the pressure-viscosity coefficient of ILs are generally between 

12~21 GPa
-1

 (Pensado et al., 2008; Paredes et al., 2012; Mordukhovich et al., 2013; Gaciño et 

al., 2015), thus here the film thicknesses of the systems are calculated by assuming the limit 

values of 12 GPa
-1

 and 21 GPa
-1

 for the pure ILs. 

Table S1 shows the calculated film thicknesses do not vary significantly for different 

chosen values of the pressure-viscosity coefficient. 

TABLE S1 | The pressure-viscosity coefficients and calculated film thicknesses hc for 

the lubricants used in this study. 

Lubricant 

hc (nm) 

(α = 12 GPa
-1

) 

hc (nm) 

(α = 21 GPa
-1

) 

5 N 10 N 5 N 10 N 

P6,6,6,14 TFSI 18 18 25 24 

P8,8,8,6(2) BEHP 55 52 74 70 

P6,6,6,14 BEHP 40 39 54 52 

P6,6,6,14 (
i
C8)2PO2 42 40 56 54 

Hexadecane 1 1 1 1 
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