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Supplementary Methods S1. In-detail description of aerosol collection, classification, and inoculum 
preparation. 

Aerosol Collection 

Aerosols – in the form of total suspended particles – were sampled in Barcelona at the Institut de 
Ciencies del Mar (41.39°N, 2.20°E) and in Blanes at the Centre d’Estudis Avançats (41.68°N, 
2.80°E). Aerosol collection was carried out based on forecast presence/absence of Saharan dust (SD) 
intrusions to the Iberian Peninsula (provided by www.calima.ws; see further down): SD particles 
were collected on June, 7th (2013), August, 5th (2013), February, 18th (2014), and April, 1st – 3rd 
(2014) in Barcelona; and on February, 18th – 20th (2014) in Blanes (the same filter was employed for 
the two experiments carried out in Blanes). Anthropogenic aerosols (AA) were collected on April, 
10th (2013), July, 4th (2013), August, 12th (2013), December, 17th (2013), January, 15th, 17th and 27st 
(2014), February, 17th (2014), and July, 22nd  – 23th and 28th – 29th (2014) in Barcelona; and on 
January, 21st – 23rd (2014), February, 11th – 13rd (2014), March, 18th – 20th and 25th – 24th, May, 6th – 
9th, and June, 2nd – 5th in Blanes. Once the gravimetric determination of the particulate matter 
collected on the filters was performed, filters were cut into two equal sections. Half of the filter was 
kept at 4 ºC and employed to characterize the chemical composition of the particles, and the other 
half was frozen at −20 ºC until used as inoculum in the amendment experiments.  

 
Aerosol Classification 

Classification of aerosols as SD or AA was based on (1) the predicted presence (SD) or absence 
(AA) of Saharan dust intrusions to the Iberian Peninsula and (2) subsequent verification of the 
collected aerosol filters via chemical analysis. 
The former integrated four approaches: 1) interpretation of daily meteorological conditions and daily 
air mass trajectories calculated at noon for a given day and for five days ago (at 750, 1500, and 2500 
m above sea level), using the model HYSPLIT (Hybrid Single-Particles Lagrangian Integrated 
Trajectories; http://ready.arl.noaa.gov/HYSPLIT.php); 2) maps of the Ozone Monitoring Instrument 
Aerosol Index (ftp://toms.gsfc.nasa.gov/pub/omi/images/aerosol/) as well as daily satellite images 
from NASA (http://oceancolor.gsfc.nasa.gov/SeaWiFS/HTML/dust.html); 3) results from 
simulations using the models SKIRON (University of Athens; Athens, Greece), DREAM (Barcelona 
Supercomputing Centre; Barcelona, Spain), and NAAPS (US Naval Research Laboratory at 
Monterrey; Monterrey, USA); and 4) application of the model HIRLAM-AEMET with regard to 
wind trajectories (http://www.aemet.es/es/eltiempo/prediccion/modelosnumericos/hirlam005). All 
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four approaches were integrated to provide a forecast of the presence or absence of SD intrusions to 
the Iberian Peninsula; hence, allowing sampling of aerosols at time points predicted to be of mineral 
(SD) or rather anthropogenic (AA) origin. 

Chemical analysis of the collected filters was subsequently carried out to verify the aerosols’ origin. 
The analyses were done following the methodologies found elsewhere (Moreno et al., 2006; Querol 
et al., 2001). For this purpose, a number of ratios among different chemical elements were calculated 
(P:Al, Fe:Al, Zn:Al, Pb:Al, Cd:Al, Si:Ca, Si:Fe, Al:Ca, Al:Fe, Ti:Ca and Ti:Fe). Threshold ratios of 
0.012, 0.63, 1.01.10-3, 3.41.10-4, and 1.71.10-6 exist for P:Al, Fe:Al, Zn:Al, Pb:Al, and Cd:Al, 
respectively (Guieu et al., 2010, and references therein): observed ratios below and above these 
threshold values would classify the samples as of SD and AA, respectively. Moreover, high ratios of 
Si:Ca, Si:Fe, Al:Ca, Al:Fe, Ti:Ca and Ti:Fe would be attributed to SD (Nava et al., 2012). To further 
distinguish SD from AA, the enrichment factor (EF) was calculated for trace metals as described in 
Migon et al. (2001): 

𝐸𝐹! =  
(!!")!"

(!!")!"
                    Eq.S1 

, where M is the concentration of the metal estimated in the aerosol (AE) or in the continental crust 
(CR). The concentrations of M and Al in CR are the ones reported by Wedepohl (1995). Ratios close 
to 1 are typical of crustal origin aerosols, while values above 10 normally belong to 
anthropogenically-derived aerosols (Migon et al., 2001).  

 
Aerosol inoculum preparation 

Particles were extracted from the filters into 250 ml of artificial seawater (37 g l-1; NaCl EMSURE, 
Grade ACS, Merck; Darmstadt, Germany) by sonication for 20 min (7 kHz) in a Bandelin 
SONOREX Digital 10 P Ultrasonic bath (Sigma-Aldrich, Merck; Darmstadt, Germany). This 
solution was used to inoculate the microcosm stimulation experiments. 
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Supplementary Methods S2. In-detail description of PCR amplification and pyrosequencing, and 
subsequent sequence analyses. 

PCR amplification and pyrosequencing. The bacterial hypervariable regions V1, V2, and V3 of the 
16S rRNA gene were PCR amplified, using a forward and a reverse fusion primer 28F (5’-
GAGTTTGATCNTGGCTCAG-3') and 519R (5’-GTNTTACNGCGGCKGCTG-3') (Handl et al., 
2011), respectively. The primers were modified in advance according to the final configuration: 
AdaptorA-MID-28F and biotin-AdaptorB-519R (AdaptorA and B are 454 Life Sciences adaptor 
sequences; Branford, CT, USA). Multiplex identifiers (MID) were 8-10 nucleotides long and sample 
specific. Amplifications were performed in a 25-µl reaction volume made up of 1µl of template, 1µl 
of each primer (5 µM), and 22 µl of the Qiagen HotStar Taq master mix (Qiagen Inc; Valencia, CA, 
USA). Molecular grade water was used as negative control. Reactions were performed on ABI Veriti 
thermocyclers (Applied Biosytems; Carlsbad, CA, USA) according to the following thermal profile: 
95 ○C for 5 min, 35 cycles of 94 ○C for 30 sec, 54 ○C for 40 sec, and 72 ○C for 1 min, and finalized 
by one cycle at 72 ○C for 10 min. PCR amplicons were then pooled equimolarly and cleaned using 
the Agencourt AMPure XP purification kit (BeckmanCoulter Inc.; Brea, CA, USA). The final, 
pooled, amplicon was re-quantified and diluted accordingly, upon which it was used in emulsion 
PCR. Sequencing was performed on a 454 GS-FLX+ system (454 Life Sciences). 

Sequence analyses. Pyrosequences were processed in QIIME (v 1.6) (Caporaso et al., 2011). After 
de-multiplexing and a first quality check, sequences were between 125 and 600 bp long, showed a 
quality score >25, contained no more than 2 mismatches in the primer sequences, and no 
homopolymers longer than 6 bp. To correct for reading mistakes, a DeNoiser algorithm (Reeder and 
Knight, 2009) was run only including the sequences that had passed the initial quality check. 
Denoised centroids and singletons were clustered into operational taxonomic units (OTUs) at a 
sequence identity level of 97% using UCLUST (Edgar, 2010). Prior to chimera detection and 
removal (ChimeraSlayer) (Haas et al., 2011), representative sequences were aligned according to the 
SILVA (Quast et al., 2013) alignment (release 108) using MOTHUR (v 1.33.3) (Schloss et al., 2009). 
The remaining sequences were again aligned and taxonomy was assigned according to the SILVA 
alignment (release 123). OTUs were assigned to a given group in case its representative sequence 
showed a BLAST hit to a reference sequence with an e-value < 10−5

. OTUs with an e-value above 
this threshold were classified as uncertain. Finally, pyrosequences that were either assigned as 
Archaea, Eukaryota, or uncertain, or contained fewer than 2 reads, were removed from the final 
dataset.  

  



  Supplementary Material 

 4 

References 
Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K., et al. 

(2011). NIH Public Access. 7, 335–336. doi:10.1038/nmeth.f.303.QIIME. 
Edgar, R. C. (2010). Search and clustering orders of magnitude faster than BLAST. Bioinformatics 

26, 2460–2461. doi:10.1093/bioinformatics/btq461. 
Guieu, C., Loÿe-Pilot, M. D., Benyahya, L., and Dufour, A. (2010). Spatial variability of atmospheric 

fluxes of metals (Al, Fe, Cd, Zn and Pb) and phosphorus over the whole Mediterranean from a 
one-year monitoring experiment: Biogeochemical implications. Mar. Chem. 120, 164–178. 
doi:10.1016/j.marchem.2009.02.004. 

Haas, B. J., Gevers, D., Earl, A. M., Feldgarden, M., Ward, D. V, Giannoukos, G., et al. (2011). 
Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced 

Handl, S., Dowd, S. E., Garcia-Mazcorro, J. F., Steiner, J. M., and Suchodolski, J. S. (2011). Massive 
parallel 16S rRNA gene pyrosequencing reveals highly diverse fecal bacterial and fungal 
communities in healthy dogs and cats. FEMS Microbiol. Ecol. 76, 301–310. doi:10.1111/j.1574-
6941.2011.01058.x. 

Migon, C., Sandroni, V., and Béthoux, J. P. (2001). Atmospheric input of anthropogenic phosphorus 
to the northwest Mediterranean under oligotrophic conditions. Mar. Environ. Res. 52, 413–426. 
doi:10.1016/S0141-1136(01)00095-2. 

Moreno, T., Querol, X., Castillo, S., Alastuey, A., Cuevas, E., Herrmann, L., et al. (2006). 
Geochemical variations in aeolian mineral particles from the Sahara-Sahel Dust Corridor. 
Chemosphere 65, 261–270. doi:10.1016/j.chemosphere.2006.02.052. 

Nava, S., Becagli, S., Calzolai, G., Chiari, M., Lucarelli, F., Prati, P., et al. (2012). Saharan dust 
impact in central Italy: An overview on three years elemental data records. Atmos. Environ. 60, 
444–452. doi:10.1016/j.atmosenv.2012.06.064. 

Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., et al. (2013). The SILVA 
ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic 
Acids Res. 41, 590–596. doi:10.1093/nar/gks1219. 

Querol, X., Alastuey, A., Rodriguez, S., Plana, F., Ruiz, C. R., Cots, N., et al. (2001). PM10 and 
PM2.5 source apportionment in the Barcelona Metropolitan area, Catalonia, Spain. Atmos. 
Environ. 35, 6407–6419. doi:10.1016/S1352-2310(01)00361-2. 

Reeder, J., and Knight, R. (2009). The “rare biosphere”: a reality check. Nat. Methods 6, 636–637. 
doi:10.1038/nmeth0909-636. 

Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E. B., et al. (2009). 
Introducing mothur: Open-source, platform-independent, community-supported software for 
describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541. 
doi:10.1128/AEM.01541-09. 

Wedepohl, K. H. (1995). The composition of the continental crust. Geochim. Cosmochim. Acta 59, 
1217–1232. 

 
  



 5 

Supplementary Figures  

 

Figure S1. Average concentration of NO3
- (A), NH4

+ (B), total inorganic phosphorous (TIP) (C), and 
total organic carbon (TOC) (D) in each treatment (C, AA, SD). In each experiment, variables were 
measured before the aerosol addition (“BEFORE”), after the addition (“AFTER”), and at the end of 
the incubation time (“END INCUBATION”). Error bars show the standard deviation from two 
replicate containers (N = 2). Abbreviations: WI-BCN = winter experiment-Barcelona; SP-BCN = 
spring experiment-Barcelona; SU-BCN = summer experiment-Barcelona; SP-BLA = spring 
experiment-Blanes; SU-BLA = summer experiment-Blanes; SU-OFF = summer experiment-offshore; 
C = controls; AA = anthropogenic aerosols; SD = Saharan dust. 
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Figure S2. Average concentration of chlorophyll a (Chl) (A), heterotrophic bacterial abundance 
(HBA) (B) and production (HBP) (C) in each treatment (C, AA, SD). Legends and plot titles as in 
Figure S1. 
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Figure S3. Relative abundance (%) of the most abundant marine groups (>1% of the total relative 
abundance) identified in the experimental samples, presented as the average from two duplicate 
microcosms (N = 2).  
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Figure S4. Box-plot representation of diversity indexes comparing the different seasons (WI, SP and 
SU) in Barcelona (N = 17). Diversity was measured by A) Chao 1 index, and B) Shannon index. The 
boxes indicate median and quartile values, while the whiskers indicate the range (minima and 
maxima). Different letters point to significant differences (PERMANOVA, p < 0.05) found between 
seasons. 
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Figure S5. Box-plot representation of diversity indexes comparing the different locations (BCN, 
BLA, OFF) in summer (N = 18). Plot interpretation information as in Figure S4. 
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Figure S6. Linear regression between the two replicates for chlorophyll data measured in the 6 
experiments, considering all the treatments and sampling dates (N = 192). The 95% confidence 
region is grey-shadowed around the regression line. 
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Supplementary Tables 

Table S1. GenBank database accession number for the different samples. 

Sample Name Accession number 

WI-BCN.C SAMN05914900 

WI-BCN.AAI SAMN05914901 

WI-BCN.AAII SAMN05914902 

WI-BCN.AAIII SAMN05914903 

WI-BCN.AAIV SAMN05914904 

SP-BCN.CI SAMN05914922 

SP-BCN.CII SAMN05914923 

SP-BCN.AAI SAMN05914924 

SP-BCN.AAII SAMN05914925 

SP-BCN.SDI SAMN05914926 

SP-BCN.SDII SAMN05914927 

SU-BCN.CI SAMN05914888 

SU-BCN.CII SAMN05914889 

SU-BCN.AAI SAMN05914890 

SU-BCN.AAII SAMN05914891 

SU-BCN.SDI SAMN05914892 

SU-BCN.SDII SAMN05914893 

SP-BLA.CI SAMN05914905 
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SP-BLA.CII SAMN05914906 

SP-BLA.AAI SAMN05914907 

SP-BLA.AAII SAMN05914908 

SP-BLA.SDI SAMN05914909 

SP-BLA.SDII SAMN05914910 

SU-BLA.CI SAMN05914928 

SU-BLA.CII SAMN05914929 

SU-BLA.AAI SAMN05914930 

SU-BLA.AAII SAMN05914931 

SU-BLA.SDI SAMN05914932 

SU-BLA.SDII SAMN05914933 

SU-OFF.CI SAMN05914936 

SU-OFF.CII SAMN05914937 

SU-OFF.AAI SAMN05914938 

SU-OFF.AAII SAMN05914939 

SU-OFF.SDI SAMN05914940 

SU-OFF.SDII SAMN05914941 

 


