
NoMAS: A Computational Approach to Find Mutated Subnetworks
Associated with Survival in Genome-Wide Cancer Studies

Federico Altieri* Tommy Hansen† Fabio Vandin ∗,‡

vandinfa@dei.unipd.it

Supplemental Material
A Proof Sketches

Proposition 1. For i = 1, 2, . . . ,m, let wi = ci −
∑i

j=1
cj

m−j+1 . Then

m∑
j=1

cj

(
xj −

m1 −
∑j−1

i=1 xi
m− j + 1

)
=

m∑
j=1

wjxj .

Proof (Sketch).

m∑
j=1

wjxj =
m∑
j=1

(
cj −

j∑
i=1

ci
m− i+ 1

)
xj

=

 m∑
j=1

cjxj

−
 m∑
j=1

xj

j∑
i=1

ci
m− i+ 1


=

 m∑
j=1

cjxj

−
 ∑
j:cj 6=0

∑m
i=j xi

m− j + 1


=

 m∑
j=1

cjxj

−
 m∑
j=1

ci
m1 −

∑j−1
i=1 xi

m− j + 1


=

m∑
j=1

cj

(
xj −

m1 −
∑j−1

i=1 xi
m− j + 1

)
= V (x).

Theorem 1. The max k-set log-rank problem is NP-hard.

Proof (Sketch). The reduction is from the minimum set cover problem. In particular, we will show that if
we can find a set S with |S| maximizing w′(S) in polynomial time, then we can test (in polynomial time)
if there is a set cover of cardinality k. This implies that one could find the size of the minimum set cover in
polynomial time, that is an NP-hard problem.

*Department of Information Engineering, University of Padova, Padova (Italy).
†Department of Mathematics and Computer Science, University of Southern Denmark, Odense (Denmark).
‡Corresponding author.

1

In the minimum set cover problem, one is given elements e1, . . . , en, where each element ei, 1 ≤ i ≤ n
is a subset of a universe set U , with |U| = m. The goal is to find the minimum cardinality subset C ⊂
{e1, . . . , en} such that ∪e∈C = U .

Given an instance of the minimum set cover problem, we build an instance of the max k-set log-rank as
follows. For each element ei, 1 ≤ i ≤ n, we have a gene gi, with G = {g1, . . . , gn}. The set P of patients
has cardinality 4|U|. P is partitioned into two sets P1 and P2, with P1∩P2 = ∅ and P = P1∪P2. Moreover
we have |P1| = U and |P2| = 3U , and the survival time of all patients in P1 is lower than the survival time
of all patients in P2. In addition, no patient of P1 is censored, while all patients in P2 are censored. The
patients of P1 correspond to the elements of U , and gene gi is mutated in patients ei ⊂ U .

We now show that there is a minimum set cover of cardinality k if and only if maxS⊂G,|S|=k w
′(S) =

m
4
−
∑m/4

j=1
1

m−j+1√
9m2/16

. In particular, we will show that the maximum log-rank statistic is obtained when xi = 1

for all 1 ≤ i ≤ m
4 and xi = 0 for all m4 < i ≤ n, that can be achieved if and only if there is a set cover of

cardinality k. (Note that m is divisible by 4 by construction.)
To prove the above, it is enough to show the following:

i) wi > 0 for 1 ≤ i ≤ m
4 ;

ii) for a fixed m1 ≤ m
4 , the maximum weight is given by

∑m1
i=1 wi√

m1(m−m1)
;

iii) for all 1 ≤ j ≤ m
4 − 1:

∑j
i=1 wi√
j(m−j)

≤
∑j+1

i=1 wi√
(j+1)(m−(j+1))

.

We first note that wi > wi+1 for 1 ≤ i < m
4 .

wi − wi+1 = 1−
i∑

j=1

1

m− j + 1
− 1 +

i+1∑
j=1

1

n− j + 1
=

1

m− i > 0.

To prove i) above it is then enough to prove that wm
4
> 0.

wm
4

= 1−
m/4∑
j=1

1

m− j + 1
= 1−

m∑
j= 3m

4
+1

1

j
= 1−H(m) +H

(
3m

4

)
.

where H(m) is the m-th harmonic number. Since H(m) ≤ lnm+ γ + 1
2m , with γ ≤ 0.58 constant, for m

large enough, and H(m) ≥ lnm, we have:

wm
4
≥ 1− lnm− γ − 1

2m
+ ln

3m

4
≥ 1− ln

4

3
− γ − 1

2m
> 0.1− 1

m
> 0 (1)

for m large enough.
ii) follows immediately from i) and from wi > wi+1 for 1 ≤ i < m

4 (since fixed m1, the denominator√
m1(m−m1) is fixed).

We now prove iii). We first derive an alternative way to write
∑j

i=1wi:

2

j∑
i=1

wi =

j∑
i=1

(
1−

i∑
`=1

1

m− `+ 1

)

= j −
j∑
i=1

i∑
`=1

1

m− `+ 1

= j −
j∑
`=1

j − `− 1

m− `+ 1

= j −
j−1∑
`=0

j − `
m− `

= j −
j−1∑
`=0

j

m− ` +

j−1∑
`=0

`

m− `

= j

(
1−

j−1∑
`=0

1

m− `

)
+

j−1∑
`=1

`

m− ` .

Analogously
j+1∑
i=1

wi = (j + 1)

(
1−

j∑
`=0

1

m− `

)
+

j∑
`=1

`

m− `

We now prove that ∑j
`=1

`
m−`√

(j + 1)(m− (j + 1))
≥
∑j−1

`=1
`

m−`√
j(m− j)

and that
(j + 1)

(
1−∑j

`=0
1

m−`

)
√

(j + 1)(m− (j + 1))
≥
j
(

1−∑j−1
`=0

1
m−`

)
√
j(m− j)

that together imply iii).
We start from the first inequality. The proof is by induction on j. The base case j = 1 is proved by

substitution: the left hand side is > 0 while the right hand side in 0. Now let us assume that the inequality
is true for all values up to j − 1 ≥ 1: we prove that the inequality is correct for j.

∑j
`=1

`
m−`√

(j + 1)(m− (j + 1))
=

∑j−1
`=1

`
m−` + j

m−j√
(j + 1)(m− (j + 1))

≥

√
j(m−j)√

(j−1)(m−(j−1))

∑j−2
`=1

`
m−` + j

m−j√
(j + 1)(m− (j + 1))

where the second inequality follows from the inductive hypothesis. Now note that√
j(m− j)√

(j − 1)(m− (j − 1))

j−2∑
`=1

`

m− ` ≥
√

(j + 1)(m− (j + 1))√
j(m− j)

j−2∑
`=1

`

m− `

3

since the function √
(j + 1)(m− (j + 1))√

j(m− j)

is non-increasing in j for j ≤ m
4 . To complete the proof we need to show that j

m−j ≥
√

(j+1)(m−(j+1))√
j(m−j)

j−1
m−j+1 :

j

m− j ≥
√

(j + 1)(m− (j + 1))√
j(m− j)

j − 1

m− j + 1

j(m− j + 1)

(j − 1)(m− j) ≥
√

(j + 1)(m− j − 1)

j(m− j)
j2(m− j + 1)2

(j − 1)2(m− j)2 ≥ (j + 1)(m− j − 1)

j(m− j)
j3(m− j + 1)2 ≥ (j + 1)(m− j − 1)(j − 1)2(m− j).

Since (m− j + 1)2 ≥ (m− j − 1)(m− j), we just need to prove j3 ≥ (j + 1)(j − 1)2:

j3 ≥ (j + 1)(j − 1)2 = j3 − j2 − j + 1

j2 + j ≥ 1

that is true for all j ≥ 1.
The proof of

(j + 1)
(

1−∑j
`=0

1
m−`

)
√

(j + 1)(m− (j + 1))
≥
j
(

1−∑j−1
`=0

1
m−`

)
√
j(m− j)

is analogous.

Theorem 2. The max connected k-set log-rank problem on graphs with at least one node of degreeO
(
n

1
c

)
,

where c > 1 is constant, is NP-hard.

Proof (Sketch). Take an instance of set cover with n elements. We can “encode” it in the neighbours of a
node of degree n in a graph with nc vertices, where c > 0 is a constant, using the same scheme used for
Theorem 1. All other vertices have no mutations. Note that the reduction is polynomial.

Proposition 2. For every k ≥ 3 there is a family of instances of the max connected k-set log-rank problem
and colorings for which OPT is not found by our algorithm even if it is colorful.

Proof (Sketch). Let the number of samples be n = 8(k−1). The censoring information c is such that ci = 1
for 1 ≤ i ≤ n

4 and cj = 0 for n4 +1 ≤ j ≤ n. From Theorem 1 we get that all weightswi > 0 for 1 ≤ i ≤ n
4 .

Let I be a tree with one internal vertex v0 and k+ 1 leaf vertices {v1, v2, . . . , vk−1, v̄1, v̄2}. Consider a col-
oring C in which C(vi) are distinct for 0 ≤ i ≤ k−1 and C(vj) = C(v̄j) for 1 ≤ j ≤ 2. Let σ(v) be the set of
weights for vertex v, i.e containing a weight for each sample mutated in the gene associated with v. Assign
the weights such that σ(v0) = ∅, σ(vi) = {wi, wk−1+i} and σ(v̄i) = {w1, w2}. Note that for any k ≥ 3
the optimal connected subnetwork OPT = S = {v0, v1, . . . , vk−1} since σ(S) = {w1, w2, . . . , wn/4}. By
construction OPT is colorful.

The idea of the construction is to have two bad colors. A color c is bad if it is assigned to two vertices.
The vertex in OPT with color c is a good vertex, while the vertex with color c not in OPT is a bad

4

vertex. In our construction v1 and v2 are good vertices and v̄1 and v̄2 are bad vertices. Recall that our
algorithm combines two subnetworks that are connected by an edge, thus every subnetwork of size ` must
be a combination of a leaf vi and some subnetwork W (T, v0) of size ` − 1. To generate OPT , at some
point we will have that vi is one of the good vertices while W (T, v0) contains the other good vertex. We
will show that this cannot happen. In particular we argue that W (T, v0) cannot contain only one bad color
and be a subset of OPT . Without loss of generality, assume v1 is the vertex with a bad color in W (T, v0).
Consider the time it is added toW (T, v0) by combination of someW (Q, v0)\{v1, v2} andW ({C(v1)}, v1).
However, our algorithm will choose to combine with v̄1 in stead of v1 because v̄1 yields the largest increase
in the normalized log-rank statistic. To see this, note that v1 and v̄1 both add two weights to σ(W (Q, v0))
that are not already in σ(W (Q, v0)). Both options therefore have the same number of mutations, and their
normalized log-rank statistic can be compared by simply comparing their log-rank statistic. By construction
σ(v̄0) contains the two largest weights, hence it yields the larger log-rank statistic.

Theorem 3. For any optimal colorful connected subnetwork S of size k ≥ 3 and any algorithm A which
obtains subnetworks with colorsets of cardinality i by combining 2 subnetworks with colorsets of cardinality
< i, by adding 3 neighbors to S we have that A may not discover S .

sketch. Let the k vertices of OPT be deemed good vertices. For each of three of the vertices in OPT we
add a bad copy, so that the good vertex v and the bad vertex v̄ have the same color and the same connectivity
to the vertices in OPT \ {v}. By definition of A, S is found by combining two subnetworks of cardinality
< k, and because there are three good vertices in OPT , one of these subnetworks of cardinality < k will
contain at least two good vertices. We show that an evil adversary can ensure that two subnetworks S1 and
S2, both being entries in W and each containing a good vertex, will never be combined by A.

The combination of S1 and S2 will happen across a specific edge in the graph between one vertex
v1 ∈ S1 and one vertex v2 ∈ S2. If v2 is a good vertex then there will be another subnetwork S̄2 in
W with the same colorset as S2, namely in the column corresponding to the bad vertex v̄2, and since
the connectivities of v2 and v̄2 to OPT are the same, A must select one of them. Due to the fact that
|S1 ∪ S2| < k the adversary will be able to plant mutations so that S̄2 is chosen over S2. If v2 is neither a
good nor a bad vertex the same argument can be made to show that the adversary can ensure that S2 will not
contain any good vertices.

The following is a result that we need to prove the performance of NoMAS under the Planted Subnet-
work Model.

Proposition 3. For every censoring vector c:
∑m

i=1wi = 0.

5

Proof (Sketch). When ci = 1 for all 1 ≤ i ≤ m, the we have

m∑
i=1

wi =

m∑
i=1

ci − i∑
j=1

cj
m− j + 1


=

m∑
i=1

1−
i∑

j=1

1

m− j + 1


= m−

m∑
i=1

i∑
j=1

1

m− j + 1

= m−
m∑
i=1

i
1

i

= m−m
= 0.

When one ci is switched to the value 1, we have that the weight changes by a factor:

−1 +

m∑
j=i

1

m− i+ 1
= 0 (2)

where the −1 is subtracted to wi, while the value 1
m−i+1 is summed (i.e., not subtracted) to all terms wj

with j ≥ i. Therefore, any change to the censoring vector leaves
∑m

i=1wi = 0.

Using the above, we can prove the following.

Theorem 4. Let M be a mutation matrix corresponding to m samples from the Planted Subnetwork Model.
If m ∈ Ω

(
k4(k + ε) lnn

)
for a given constant ε > 0 and O

(
ln(1/δ)ek

)
color-coding iterations are

performed, then our algorithm identifies the optimal solution D to the max connected k-set log-rank with
probability ≥ 1− 1

nε − δ.

Proof (Sketch). Assume thatD is colorful. We prove that if NoMAS has build a subnetwork (with 1 ≤ i < k
vertices) consisting of vertices ofD only, then ifm ∈ Ω

(
k2(k + ε) lnn

)
, NoMAS will expand such solution

by only using vertices in D. Since NoMAS starts to build solutions from each vertex in D, this proves that
NoMAS identifies the optimal solution. We show this by proving that any set C ⊂ G \ D, when added to
any subset S ⊂ D, does not provide an improvement in the score as just adding one of the genes in D.

From the properties of the Planted Subnetwork Model (PSM), we have that if S is a subset of D, then
w(S) ≥ c′m

k , where c′ is a constant > 0. For a set C ⊂ G \ D, we can consider it as a “metagene” that is
mutated with a certain probability q (constant) in each sample, where q depends on the genes in C.

From Property 3, we have that E[w(S ∪ C) − w(S)] = −qw(S) ≤ −q c′mk , since the sum of all
weights wi is 0 and C adds weights from a set of weights that must sum to −w(S). From the properties
of PSM, for a gene g ∈ D \ S we have w(S ∪ {g}) − w(S) ≥ c′′m

k , with c′′ > 0 constant. Note that
w(S ∪ C) − w(S) is the sum of independent random variables, and each random variable can change the
value of w(S∪C)−w(S) by a value< m. Moreover, the number of samples in which C can have mutations
while S does not is at least m

k and at most m. We can therefore use Hoeffding inequality to bound the
probability that w(S ∪ C) > w(S ∪ {g}) as follows:

Pr(w(S ∪ C) > w(S ∪ {g})) = Pr(w(S ∪ C)− w(S) > w(S ∪ {g})− w(S))

≤ e−d((
m
k
)2(m

k
)2/m3

≤ 1

nk+ε

6

for an appropriate constant d > 0 and for m ∈ Ω
(
k4(k + ε) lnn

)
. By union bound on all sets C of

cardinality ≤ k, we have that Pr(w(S ∪ C) > w(S ∪ {g})) ≤ 1
nk+εn

k = 1
nε . Therefore, when m ∈

Ω
(
k4(k + ε) lnn

)
and D is colorful, then NoMAS finds D with probability ≥ 1− 1

nε . The probability that
D is not colorful in any of the O

(
ln(1/δ)ek

)
color-coding iterations is ≤ δ. Therefore, by union bound

the probability that NoMAS does not identify D when m ∈ Ω
(
k4(k + ε) lnn

)
is ≤ δ + 1

nε , and the result
follows.

B Modifications to NoMAS
We design two modifications of NoMAS that can solve some easy cases where NoMAS may not identify
the highest scoring solution due to its subnetwork merging strategy:

i) we merge a subnetwork W (T, u) not only with subnetworks W (R, v) where v is a neighbor of u, but
with subnetworks W (R,w) where w is a neighbor of any vertex in W (T, u);

ii) in W (T, u), we store ` > 1 different colorful subnetworks containing u and with colorset T , leading to
≤ `2 choices for combining two entries of W and a corresponding `2 increase in the time complexity
of the algorithm.

We note that the time complexity required by modification i) above is still polynomial at most a factor
|V |2/|E| ∈ Ω (n) larger than that of NoMAS. We note that both modifications find the optimal solution in
the problem instance of Proposition 2, while the second one will find the optimal solution in the problem
instance of Theorem 3 if ` is large enough. The second modification was run using ` = 5 in our experiments
and storing in W (T, u) the ≤ ` highest scoring subnetworks in S ′(T, u).

C Greedy algorithms
We considered three different greedy strategies for the max connected k-set log-rank problem. All three
algorithms build solutions starting from each node u ∈ G in iterations by adding nodes to the current
solution S, and differ in the way the enlarge the current subnetwork S of size 1 ≤ i < k. The first,
Greedy1, screens all vertices at distance 1 to S and adds the one that results in the best subnetwork of size
i + 1. The second, GreedyK, considers all vertices at distance ≤ k − i to S, and enforces connectivity
by greedily constructing a path from the selected vertex to a vertex in S. The third, GreedyDFS, traverses
shortest paths from S to every vertex at distance ≤ k − i by a depth-first search. The vertices on some
shortest path of length j ≤ k− i which improved S the most are added to obtain a subnetwork of size i+ j.

7

D Pseudo code for NoMAS
The pseudo code for NoMAS is divided into three algorithms. First, algorithm 1 highlights the overall color-
coding scheme. Second, algorithm 2 describes how the dynamic programming tableW is computed in order
of increasing colorset group sizes. Finally, algorithm 3 details the process of computing the subnetwork at
a specific entry in W . It is assumed that the undirected graph G(V,E), the mutation matrix M and the
survival information x, c are globally known. As a companion piece to algorithm 3, figure 1 visualizes the
method used for combining two previously computed entries of W .

Algorithm 1: NOMAS(k, δ)
best← nil
for i← 1 to ln(1δ)ek do

Color the vertices of G with k colors uniformly at random
W ← FILLTABLE(k)
best← arg max

∀T∀v : W (T,v)∈W
{w(W (T, v))}

return best

Algorithm 2: FILLTABLE(k)

W ← empty table with dimensions (2k − 1)× |V |
for each vertex u ∈ V do

for each color α among the k colors do
if the color of u is α then

W ({α}, u)← {u}
else

W ({α}, u)← nil
for i← 2 to k do

/* The following may be distributed among N ≤ |V | processors */

for each vertex u ∈ V do
for each colorset T of size i do

W (T, u)← COMPUTEENTRY(T , u)
return W

Algorithm 3: COMPUTEENTRY(T , u)
best← nil
for each neighbor v of u do

for each colorset Q s.t. Q ⊂ T and Q 6= ∅ do
R← T \Q
candidate←W (Q, u) ∪W (R, v)
best← arg max{w(candidate), w(best)}

return best

Modifications The two proposed modifications to NoMAS differ from NoMAS in their method for com-
puting an entry of W . Algorithm 4 describes modification i, while algorithm 5 details modification ii. Both
algorithms should be seen as replacements for algorithm 3 of the unmodified version of NoMAS. Figure 5
visualizes the combination strategy of algorithm 4 (note the difference from figure 1).

8

uvu

v

v u

Figure 1: Examples of several pairs of colorful connected subnetworksW (Q, u) andW (R, v) considered by NoMAS
when computing the entryW (T, u) for a colorset T of size 5. In each example a subnetwork containing u are combined
with a subnetwork containing a neighbor v of u, in order to obtain a subnetwork with colorset T = Q ∪ R such that
Q ∩R = ∅. The dotted edge is the one connecting the two subnetworks (the edge is always connected to u).

Algorithm 4: MODIFICATIONI(T , u)
best← nil
for each colorset Q s.t. Q ⊂ T and Q 6= ∅ do

for each neighbor w of a vertex in W (Q, u) do
R← T \Q
candidate←W (Q, u) ∪W (R,w)
best← arg max{w(candidate), w(best)}

return best

Algorithm 5: MODIFICATIONII(T , u)
candidates← ∅
for each neighbor v of u do

for each colorset Q s.t. Q ⊂ T and Q 6= ∅ do
R← T \Q
for each subnetwork A ∈W (Q, v) do

for each subnetwork B ∈W (R, v) do
candidates← candidates ∪{A ∪B}

best← the ` distinct highest scoring subnetworks in candidates
return best

u

w

u

w
w

u

Figure 2: Examples of several pairs of colorful connected subnetworksW (Q, u) andW (R,w) considered by NoMAS
with modification i when computing the entry W (T, u) for a colorset T of size 5. In each example a subnetwork
W (Q, u) containing u are combined with a subnetwork containing a neighbor w of some vertex in W (Q, u), in order
to obtain a subnetwork with colorset T = Q ∪R such that Q ∩R = ∅. The dotted edge is the one connecting the two
subnetworks.

9

GreedyK NoMAS

(a)

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rm

ut
at

io
n

p-
va

lu
e

GBM, −w(S), k = 5

GreedyK NoMAS

(b)

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rm

ut
at

io
n

p-
va

lu
e

GBM, −w(S), k = 6

GreedyK NoMAS

(c)

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rm

ut
at

io
n

p-
va

lu
e

GBM, w(S), k = 5

GreedyK NoMAS

(d)

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rm

ut
at

io
n

p-
va

lu
e

GBM, w(S), k = 6

Supplementary Figure 1: p-values of the permutation test on the top 10 solutions identified by GreedyK for different
values of k in both tail tests. The top 10 solutions on the permuted data are obtained using both GreedyK and NoMAS
(with 32 color-coding iterations).

2 3 4 5
k

(a)

1

0

1

2

3

lo
g 1

0(s
ec

on
ds

)

Running times - OV
Exhaustive
NoMAS

2 3 4 5
k

(b)

1

0

1

2

3

lo
g 1

0(s
ec

on
ds

)

Running times - GBM
Exhaustive
NoMAS

2 3 4 5
k
(c)

1

0

1

2

3

lo
g 1

0(s
ec

on
ds

)

Running times - LUSC
Exhaustive
NoMAS

Supplementary Figure 2: Running time comparison between NoMAS and the exhaustive enumeration algorithm on
three different cancer datasets. The running times of both algorithms are obtained using 40 processors. The running
times for NoMAS account for 256 color-coding iterations and excludes the statistical assessment of the identified
solutions.

10

0 1 2 3 4 5 6

log2(N)
(a)

0

50

100

150

200

250

se
co

nd
s

Running times - NoMAS

NoMAS
Modification i
Modification ii

0 1 2 3 4 5 6

log2(N)
(b)

0

1

2

3

4

5

6

7

8

lo
g 2

(s
ec

on
ds

)

Running times - NoMAS

NoMAS
Modification i
Modification ii

Supplementary Figure 3: Running times of NoMAS and the two modifications considered for varying numbers of
processors N . The running times are for a single iteration for k = 8 and are obtained on the OV cancer data (a) The
running times in seconds. (b) The running times in seconds on a logarithmic scale.

E Charts
All of the results displayed in the following charts are obtained using SNoMAS with error probability 0.1
and k′ = 4. The seeds for SNoMAS are generated by using NoMAS with error probability 0.05 to find
solutions for k = 5. Genes that are not mutated in any patients are removed from the gene-gene interaction
network.

The p-values are approximated using permutation sampling with 108 samples. The permutation p-value
(”Perm. p-value” on the charts) are obtained by permuting the data set 10 times and comparing the solutions
identified on the permuted data with the ones from the real data. Permutation is performed by shuffling the
identities of each gene, so that the network itself remains the same, but the symbols of the vertices change.
A permutation p-value of 0.1 means that either a better solution was found in a one of the permuted datasets,
or in none of the permuted dataset.

Charts are displayed for the GBM, OV and LAML datasets, in which the mutation matrices that contain
both single nucleotide mutations (from TCGA) and copy number mutations. I have included both ”old” and
”new” TCGA mutations for GBM and OV. ”Old” is the mutation matrices we used in this paper. ”New”
is the ones I generated recently. It is displayed on the second line in the top left corner of the charts. The
TCGA mutation matrix for LAML is the one you sent me recently, which we called LAML new. I have also
added charts for the three data sets for the mutation matrices that contain only the copy number mutations.
The mutations matrices are described in the captions.

11

−1

0

1

2

3

lo
g 1

0
(s

ec
on

ds
)

OV
Greedy1

GreedyK

GreedyDFS

NoMAS

GBM
Greedy1

GreedyK

GreedyDFS

NoMAS

LUSC
Greedy1

GreedyK

GreedyDFS

NoMAS

4 5 6 8

k

−1

0

1

2

3

lo
g 1

0
(s

ec
on

ds
)

Greedy1

GreedyK

GreedyDFS

NoMAS

4 5 6 8

k

Greedy1

GreedyK

GreedyDFS

NoMAS

4 5 6 8

k

Greedy1

GreedyK

GreedyDFS

NoMAS

Supplementary Figure 4: Running times of the three greedy algorithms and a single color-coding iteration of NoMAS
for varying values of k and on three different cancer data. Each of the algorithms are run on a single processor. The
top panels show the times measured when maximizing the score w(S), while the bottom panels show the times for
maximizing the score −w(S).

12

