

Supplementary Material

Hemodynamic Changes During Physiological and Pharmacological Stress Testing in Healthy Subjects, Aortic Stenosis and Aortic Coarctation Patients – A Systematic Review and Meta-Analysis

Kilian Runte^{1,2}, Kay Brosien¹, Maximilian Salcher-Konrad^{3,4}, Charlotte Schubert^{1,2}, Leonid Goubergrits¹, Sebastian Kelle^{5,6,7}, Stephan Schubert^{2,7}, Felix Berger^{2,7}, Titus Kuehne^{1,2,7}, Marcus Kelm^{1,2*}

¹ Institute for Imaging Science and Computational Modelling in Cardiovascular Medicine,

Charité - Universitätsmedizin Berlin, Berlin, Germany

- ² Department of Congenital Heart Disease, German Heart Center Berlin, Berlin, Germany
- ³ Personal Social Services Research Unit, London School of Economics and Political Science, London, UK
- ⁴LSE Health, London School of Economics and Political Science, London, UK
- ⁵ Department of Internal Medicine / Cardiology, German Heart Center Berlin, Berlin, Germany
- ⁶ Department of Internal Medicine / Cardiology, Charité Universitätsmedizin Berlin, Berlin, Germany
- ⁷ DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany

* Correspondence: Dr. Marcus Kelm mkelm@dhzb.de

Supplementary Tables

Pub	oMed, 05 November 2017	Ν
1	a) MRI/Magnetic resonance / "Magnetic resonance imaging"[Mesh]	709772
	b) Echocardiography / "Echocardiography" [Mesh]	157496
2	a) Exercise / "Exercise"[Mesh] / "Exercise Test"[Mesh]	357727
	b) Dobutamine*/ "Dobutamine"[Mesh]	9193
	c) Handgrip / Isometric exercise / "Isometric Contraction"[Mesh]	369960
3	a) Healthy subjects / Normal subjects / Control subjects / Volunteers /	1271554
	Controls / Normals / "Healthy Volunteers"[Mesh]	
	b) Coarctation / "Aortic Coarctation"[Mesh]	11367
	c) Aortic stenosis / "Aortic Valve Stenosis"[Mesh]	49594
4	a) Flow / Blood flow / Aortic flow / Peak flow / "Blood Flow	722612
	Velocity"[Mesh] / "Regional Blood Flow"[Mesh]	
	b) "Stroke volume" / "Stroke index"/ "Stroke volume"[Mesh]	45516
	c) "Cardiac output" / "Cardiac index" / "Cardiac output"[Mesh]	102882
	d) "Time to peak" / "Systolic time"/ "Ejection time"	10491
5	(1a OR 1b) AND (2a OR 2b OR 2c) AND (3a OR 3b OR 3c) AND (4a OR	1616
	4b OR 4c OR 4d)	1010
6	Limit to: Humans; English, German; Publication after 1985/01/01	1372
7	Limit to: Full text availability	1188

Table S1. Search terms used for database search.

Author	Publication	Location	Subjects	Mean age (yrs)	Special charac- teristics	Type of Stress Test	Intensity of Stress	Imaging Modality	Relevant Outcomes reported	Comments	Quality
Barber (2016)	Magnetic Resonance- Augmented Cardiopulmonary Exercise Testing: Comprehensively Assessing Exercise Intolerance in Children With Cardiovascular Disease. <i>Circ</i> <i>Cardiovasc Imaging</i> , 9(12).	UK	10	13	children	supine ergometer	sub- maximal; 4,8 METS	MRI	HR, SVI, CI, EF	Intended high intensity not reached	16/19 high
Roberts (2015)	Real-time aortic pulse wave velocity measurement during exercise stress testing. J Cardiovasc Magn Reson, 17, 86.	New Zealand	50	52.6	-	supine ergometer	38 W	MRI	HR, SV, CO, EF		10/17 moderate
Forouzan (2015)	Non-invasive measurement using cardiovascular magnetic resonance of changes in pulmonary artery stiffness with exercise. J Cardiovasc Magn Reson, 17, 109.	USA	15	26.5	-	supine leg- stepping	- 45 W - 35 W	MRI	HR, SV, CO	2 different stress intensities	9/17 moderate

Table S2. Characteristics of the included studies for healthy subjects.

Claessen (2015)	Pulmonary vascular and right ventricular reserve in patients with normalized resting hemodynamics after pulmonary endarterectomy. J Am Heart Assoc, 4(3), e001602.	Belgium	14	36	-	supine ergometer	142 W	MRI	HR, SV, CO, EF		14/19 high
Barber (2015)	MR augmented cardiopulmonary exercise testing-a novel approach to assessing cardiovascular function. Physiol Meas, 36(5), N85-94.	UK	15	38.6	-	supine ergometer	exhaustion	MRI	HR, SV, CO		11/17 high
Steding- Ehrenborg (2013)	Moderate intensity supine exercise causes decreased cardiac volumes and increased outer volume variations: a cardiovascular magnetic resonance study. J Cardiovasc Magn Reson, 15, 96.	Sweden	26	30	-	supine leg- stepping	40 bpm increase in HR	MRI	HR, SV, CO, EF		9/17 moderate
Weber (2011)	High-resolution phase- contrast MRI of aortic and pulmonary blood flow during rest and physical exercise using a MRI compatible bicycle ergometer. <i>Eur J</i> <i>Radiol, 80</i> (1), 103-108.	Germany	20	26.8	-	supine ergometer	- No load operation - 40 % increase in HR - 80% increase in HR	MRI	CO, TTP	3 different stress intensities (no load operation only in 10 subjects)	10/17 moderate

Punta- wangkoon (2009)	Reduced peripheral arterial blood flow with preserved cardiac output during submaximal bicycle exercise in elderly heart failure." J Cardiovasc Magn Reson 11:48.	USA	13	67	-	supine ergometer	sub- maximal; 37 W	MRI	HR, CO	CO given as mean aortic flow in l/min	15/19 high
Roest (March 2001)	Biventricular response to supine physical exercise in young adults assessed with ultrafast magnetic resonance imaging." Am J Cardiol 87(5): 601-605.	Nether- lands	16	17.5	-	supine ergometer	sub- maximal; 130 W	MRI	HR, SV, CO, EF		9/17 moderate
Roest (November 2001)	Prolonged cardiac recovery from exercise in asymptomatic adults late after atrial correction of transposition of the great arteries: evaluation with magnetic resonance flow mapping. <i>Am J</i> <i>Cardiol, 88</i> (9), 1011- 1017.	Nether- lands	12	28	-	supine ergometer	sub- maximal; 60 % of VO2 _{max}	MRI	HR, SV, CO		12/19 moderate
Niezen (1998)	Measurement of aortic and pulmonary flow with MRI at rest and during physical exercise. <i>J Comput</i> <i>Assist Tomogr</i> , 22(2), 194-201.	Nether- lands	16	30	-	supine ergometer	- 50 W - 100 W	MRI	HR, SV, CO, TTP, SET	2 different stress intensities	7/17 moderate

Stephensen (2016)	Changes in blood volume shunting in patients with atrial septal defects: Assessment of heart function with cardiovascular magnetic resonance during dobutamine stress. Eur Heart J Cardiovasc Imaging. 2017;18:1145- 1152.	Sweden	16	35	-	dobuta- mine ± atropine	20 µg/kg/min (70% of HR _{max})	MRI	HR, SVI, CI, EF		12/19 moderate
Pingitore (2013)	Influence of preload and afterload on stroke volume response to low- dose dobutamine stress in patients with non- ischemic heart failure: a cardiac MR study. <i>Int J</i> <i>Cardiol, 166</i> (2), 475- 481.	Italy	12	55	-	dobutamine	20 µg/kg/min	MRI	HR, SV, CO, EF		14/19 high
Ahtarovski (2013)	Termination of dobutamine infusion causes transient rebound left heart diastolic dysfunction in healthy elderly women but not in men: a cardiac magnetic resonance study. <i>Am J Physiol</i> <i>Heart Circ Physiol</i> , 305(7), H1098-1103.	Denmark	10	65 65	male female	dobutamine	15 μg/kg/min	MRI	HR, SVI, CI, EF	2 different cohorts: male and female	12/19 moderate

Ahtarovski (2012)	Left atrial and ventricular function	Denmark	20	25	young	dobutamine	15 μg/kg/min	MRI	HR, SVI, CI, EF	2 different cohorts:	13/19 moderate
(2012)	during dobutamine and		20	65	elderly		μ6/ κ6/ 1111			young and	moderate
	glycopyrrolate stress in									elderly	
	healthy young and										
	elderly as evaluated by cardiac magnetic										
	resonance. Am J Physiol										
	Heart Circ Physiol,										
	<i>303</i> (12), H1469-1473.										
Schuster	Cardiovascular	UK	10	40.6	-	dobutamine	- 10	MRI	HR, SVI,	2 different	9/17
(2011)	magnetic resonance						µg/kg/min		CI, EF	stress	moderate
	myocardial feature tracking detects						- 20			intensities	
	quantitative wall motion						- 20 μg/kg/min				
	during dobutamine										
	stress." J Cardiovasc										
	Magn Reson 13:58.										
Mandapaka	Simultaneous	USA	13	53	-	dobutamine	- 7.5	MRI	HR, SV, EF	2 different	10/17
(2011)	measurement of left and					\pm atropine	µg/kg/min			stress intensities	moderate
	right ventricular volumes and ejection						- 80 % of			intensities	
	fraction during						HR _{max}				
	dobutamine stress										
	cardiovascular magnetic										
	resonance. J Comput										
	Assist Tomogr, 35(5),										
Oosterhof	614-618.	Nether-	11	28.9		dobutamine	- 15	MRI	HR, SVI,	2 different	11/19
(2005)	Disparity between dobutamine stress and	lands	11	28.9	-	dobutamine	- 15 μg/kg/min	MRI	CI, EF	cohorts:	moderate
(2005)	physical exercise	lands								dobutamine	moderate
	magnetic resonance									stress vs.	
	imaging in patients with		14	26.8		supine	- 60% of			ergometer	
	an intra-atrial correction					ergometer	VO2 _{max}			stress	
	for transposition of the										
	great arteries. J										
	Cardiovasc Magn Reson, 7(2), 383-389.										
	1										

Dodge- Khatami (2002)	Comparable systemic ventricular function in healthy adults and patients with unoperated congenitally corrected transposition using MRI dobutamine stress testing." Ann Thorac Surg 73(6): 1759-1764.	Nether- lands	11	31	-	dobutamine	15 μg/kg/min	MRI	HR, SVI, CI, EF		10/19 moderate
Pennell (1995)	Assessment of magnetic resonance velocity mapping of global ventricular function during dobutamine infusion in coronary artery disease. <i>Br Heart</i> <i>J</i> , 74(2), 163-170.	UK	10	51	-	Dobutamine	- 5 μg/kg/min - 10 μg/kg/min - 15 μg/kg/min - 20 μg/kg/min	MRI	HR, SV, CO	4 different stress intensities	12/19 moderate
van Rugge (1993)	Quantitation of global and regional left ventricular function by cine magnetic resonance imaging during dobutamine stress in normal human subjects. <i>Eur Heart J, 14</i> (4), 456- 463.	Nether- lands	23	25	-	dobutamine	15 μg/kg/min	MRI	HR, SV, CO, EF		10/17 moderate
Knobels- dorff- Brenken- hoff (2013)	Isometric handgrip exercise during cardiovascular magnetic resonance imaging: set- up and cardiovascular effects. <i>J Magn Reson</i> <i>Imaging, 37</i> (6), 1342- 1350.	Germany	53	45	-	handgrip	30 % of maximal voluntary contraction (MVC)	MRI	HR, SV, CO		10/17 moderate

D'Alto (2017)	Echocardiographic assessment of right ventricular contractile reserve in healthy subjects. Echocardiography 34(1): 61-68.	Belgium, Italy	90	39	-	semisupine ergometer	177 W	Echo	HR, SV, CO	10/17 moderate
D'Andrea (2016)	Right atrial morphology and function in patients with systemic sclerosis compared to healthy controls: a two- dimensional strain study. Clin Rheumatol, 35(7), 1733-1742.	Italy	55	50.6	-	supine ergometer	144 W	Echo	HR, SV	14/19 high
Wang (2014)	Changes of ventricular and peripheral performance in patients with heart failure and normal ejection fraction: insights from ergometry stress echocardiography. Eur J Heart Fail, 16(8), 888-897.	Hong Kong	50	56	-	semisupine ergometer	85% of HR _{max} ; 89 W	Echo	HR, SVI, CI	13/19 moderate
Khouri (2014)	Utility of 3-dimensional echocardiography, global longitudinal strain, and exercise stress echocardiogra- phy to detect cardiac dysfun-ction in breast cancer patients treated with doxorubicin- containing adjuvant therapy. Breast Cancer Res Treat, 143(3),531- 539.	Denmark	20	57	female	upright treadmill	exhaustion; 8.7 METS	Echo	HR, SV, CI, EF	15/19 high

Tan (2013)	Exercise-induced torsional dyssynchrony relates to impaired functional capacity in patients with heart failure and normal ejection fraction. Heart, 99(4), 259-266.	UK	38	71	-	semisupine ergometer	HR up to 100 bpm	Echo	HR, SVI, CO		14/19 high
Klasnja (2013)	Cardiac power output and its response to exercise in athletes and non-athletes. Clin Physiol Funct Imaging, 33(3), 201-205.	UK	32 20	20 19.8	un- trained trained	upright ergometer	177 W 205 W	Echo	HR, SV, CO	2 different cohorts: untrained vs. trained	11/19 moderate
Henein (2013)	Impaired left ventricular systolic function reserve limits cardiac output and exercise capacity in HFpEF patients due to systemic hypertension. Int J Cardiol, 168(2), 1088-1093.	Sweden	14	65	-	semisupine ergometer	exhaustion	Echo	HR, SV, CO, EF		15/19 high
Lee (2012)	Exercise with a twist: left ventricular twist and recoil in healthy young and middle-aged men, and middle-aged endurance-trained men. J Am Soc Echocardiogr, 25(9), 986-993.	Canada	11	24 53.8	young un- trained middle aged trained	supine ergometer	HR up to 105 bpm	Echo	HR, EF	2 different cohorts: young untrained vs. middle aged trained	11/19 high
La Gerche (2012)	Maximal oxygen consumption is best predicted by measures of cardiac size rather than function in healthy adults. Eur J Appl Physiol, 112(6), 2139- 2147.	Australia	55	37	-	semisupine ergometer	exhaustion	Echo	HR, EF		10/17 moderate

Cheung (2012)	Dynamic dyssynchrony and impaired contractile reserve of the left ventricle in beta- thalassaemia major: an exercise echocardiographic study. PLoS One, 7(9), e45265.	Hong Kong	17	25,3	-	supine ergometer	70 % of HR _{max}	Echo	HR, SVI, CI, EF		14/19 high
Donal (January 2011)	Impact of aortic stenosis on longitudinal myocardial deformation during exercise. Eur J Echocardiogr, 12(3), 235-241.	France	43	68	-	semisupine ergometer	92 W	Echo	HR, EF	Study also included in AS group	15/17 high
Donal (May 2011)	Comparison of the heart function adaptation in trained and sedentary men after 50 and before 35 years of age. Am J Cardiol, 108(7), 1029- 1037.	France	38		trained	semisupine ergometer	sub- maximal 110 W 133 W	Echo	SV, CO, EF	4 different cohorts: elderly trained vs. untrained vs. young trained vs. untrained	13/19 high
			15	58.9	trained elderly un- trained		90 W				
			27	26.2	young un- trained		103 W				

Bombardini (2011)	Abnormal shortened diastolic time length at increasing heart rates in patients with abnormal exercise-induced increase in pulmonary artery pressure. Cardiovasc Ultrasound, 9, 36.	Italy	16	35	-	semisupine ergometer	exhaustion	Echo	HR, CI, EF	14/19 high
Dini (2010)	Peak power output to left ventricular mass: an index to predict ventricular pumping performance and morbidity in advanced heart failure. J Am Soc Echocardiogr, 23(12), 1259-1265.	Italy	15	55	-	semisupine ergometer	150 W	Echo	HR, SV, CO, EF	14/19 high
Argiento (2010)	Exercise stress echocardiography for the study of the pulmonary circulation. Eur Respir J, 35(6), 1273-1278.	Belgium	25	36	-	semisupine ergometer	170 W	Echo	HR, CO	9/17 moderate
Schuster (2009)	Cardiac function during exercise in obese prepubertal boys: effect of degree of obesity. Obesity (Silver Spring), 17(10), 1878-1883.	France	17	11.6	children	semisupine ergometer	exhaustion; 95 W	Echo	HR, SV, CO	14/19 high
Goodman (2009)	Left ventricular contractile function is preserved during prolonged exercise in middle-aged men. J Appl Physiol (1985), 106(2), 494-499.	Canada	12	43.5	-	semisupine ergometer	65 % of VO2 _{max}	Echo	HR, SV, EF	10/17 moderate

Cotrim (2008)	Do healthy individuals develop intraventricular gradients during exertion? Rev Port Cardiol, 27(11), 1367- 1375.	Portugal	34	50	-	upright treadmill	exhaustion	Echo	HR, SV, CI		11/17 high
Bombardini (2008)	Diastolic time - frequency relation in the stress echo lab: filling timing and flow at different heart rates. Cardiovasc Ultrasound 6: 15.	Italy	64	57	controls with normal stress echo	semisupine ergometer	exhaustion	Echo	HR, SI, CI, SET		11/17 high
De Souza (2007)	A stress echocardiography study of cardiac function during progressive exercise in pediatric oncology patients treated with anthracyclines. Pediatr Blood Cancer 49(1): 56- 64.	Canada	12	11.9	children	semisupine ergometer	exhaustion	Echo	HR, SVI, CI, SET		12/19 moderate
Rowland (2005)	Effect of pectus excavatum deformity on cardiorespiratory fitness in adolescent boys. Arch Pediatr Adolesc Med 159(11): 1069-1073.	USA	20	12.5	children	upright ergometer	- 50 W - 146 W	Echo	HR, SVI, CI	2 different intensities	12/19 moderate
Sagiv (2000)	Left ventricular contractility and function at peak aerobic and anaerobic exercises. Med Sci Sports Exerc 32(7): 1197-1201.	Israel	22	19	trained	upright ergometer	- 255 W; aerobic - 457 W; anaerobic	Echo	CO, EF	2 different intensities	12/17 high

Auerbach (1999)	Attenuated responses of Doppler-derived hemodynamic parameters during supine bicycle exercise in heart transplant recipients. Cardiology 92(3): 204-209.	Israel	18	51.1	-	supine ergometer	85 % of HR _{max}	Echo	HR, SV, CO, SET, TTP		11/19 moderate
Fisman (1990)	Altered left ventricular volume and ejection fraction responses to supine dynamic exercise in athletes. J Am Coll Cardiol 15(3): 582-588.	Israel	22 22	24.3 23.1	- un- trained - trained	supine ergometer	- 138 W - 190 W	Echo	HR, EF	2 different cohorts: untrained vs. trained	16/19 high
Ginzton (1989)	Effect of long-term high intensity aerobic training on left ventricular volume during maximal upright exercise. J Am Coll Cardiol 14(2): 364-371.	USA	14	28 19	un- trained trained	upright ergometer	 - 25% of HR_{max} - exhaustion - 25% of HR_{max} - exhaustion 	Echo	HR, SVI, EF	2 different cohorts (untrained vs. trained) with 2 different intensities	12/19 moderate
Thompson (1987)	Comparison of ventricular volumes in normal and post- myocardial infarction subjects. Med Sci Sports Exerc 19(5): 430-435.	USA	13	48.5	-	semisupine ergometer	85 % of HR _{max}	Echo	HR, SV, CO, EF		12/19 moderate
Mehdirad (1987)	Evaluation of left ventricular function during upright exercise: correlation of exercise Doppler with postexercise two- dimensional echocardiographic results. Circulation 75(2): 413-419.	USA	12	40	-	upright treadmill	Bruce protocol stage IV	Echo	HR, SVI, CI, EF		12/19 moderate

Gardin (1986)	Studies of Doppler aortic flow velocity during supine bicycle exercise. Am J Cardiol 57(4): 327-332.	USA	17	20.5	-	supine ergometer	- 50 W - sub- maximal - exhaustion	Echo	HR, SET	3 different intensities	10/17 moderate
Bryg (1986)	Effect of coronary artery disease on Doppler- derived parameters of aortic flow during upright exercise. Am J Cardiol 58(1): 14-19.	USA	20	27	-	upright treadmill	- Bruce ptocol stage II - stage IV	Echo	HR, SVI, CI	2 different intensities	11/19 moderate
Lau (2014)	Dobutamine stress echocardiography for the assessment of pressure-flow relationships of the pulmonary circulation. Chest, 146(4), 959-966.	Australia	22 22	46 44	-	dobutamine semisupine ergometer	20 µg/kg/min exhaustion	Echo	HR, CO	2 different stress types in 2 age matched cohorts: dobutamine vs. ergometer	14/19 high
Maras (2013)	Patterns of cardiac dysfunction coinciding with exertional breathlessness in hypertrophic cardiomyopathy. Int J Cardiol, 170(2), 233- 238.	Sweden	17	58	-	dobutamine	85 % of HR _{max}	Echo	HR, systolic time	systolic time not convertible into SET	11/19 moderate
Brili (2007)	Dobutamine stress echocardiography for the evaluation of cardiac reserve late after Fontan operation. Hellenic J Cardiol, 48(5), 252-257.	Greece	10	28	-	dobutamine	- 30 µg/kg/min - 20 µg/kg/min - 10 µg/kg/min - 5 µg/kg/min	Echo	HR, SV, CO, EF	4 different intensities age matched controls	13/19 moderate

Arshad (2004)	Systole-diastole mismatch in hypertrophic cardiomyopathy is caused by stress induced left ventricular outflow tract obstruction. Am Heart J, 148(5), 903- 909.	UK	23	58	-	dobutamine	40 μg/kg/min	Echo	HR, systolic time	systolic time not convertible into SET	11/19 moderate
Cnota (2003)	Cardiovascular physiology during supine cycle ergometry and dobutamine stress. <i>Med Sci Sports Exerc</i> , 35(9), 1503-1510.	USA	32	23.5	-	dobutamine supine ergometer	85 % of HR _{max} ; max. 50 μg/kg/min 85 % of HR _{max}	Echo	HR, SV, CO	2 different stress types in the same cohort: dobutamine vs. ergometer	10/17 moderate
Duncan (2001)	Long axis electromechanics during dobutamine stress in patients with coronary artery disease and left ventricular dysfunction. Heart, 86(4), 397-404.	UK	20	58	-	dobutamine	85 % of HR _{max} ; max. 40 μg/kg/min	Echo	HR, SET		13/19 moderate
Marmor (1996)	Evaluation of contractile reserve by dobutamine echocardiography: noninvasive estimation of the severity of heart failure. Am Heart J, 132(6), 1195-1201.	Israel	10		atypical chest pain (no cardiac cause)	dobutamine	- 40 μg/kg/min - 30 μg/kg/min - 20 μg/kg/min - 10 μg/kg/min - 5 μg/kg/min	Echo	HR, CO	4 different intensities no age provided	13/19 moderate
Blomstrand (1995)	Cardiovascular effects of dobutamine stress testing in healthy women. Clinical cardiology. 1995;18:659-663.	Sweden	11	63	female	dobutamine	- 10 μg/kg/min - 5 μg/kg/min	Echo	HR, SV, CO	2 different intensities	11/17 high

Weiner (2012)	The impact of isometric handgrip testing on left ventricular twist mechanics. J Physiol, 590(20), 5141-5150.	USA	18	29.7	healthy controls	handgrip	40 % of MVC	Echo	HR, SV, CO, EF		11/17 high
Bozkurt (2006)	Echocardiographic findings in patients with Behcet's disease. Am J Cardiol, 97(5), 710-715.	Turkey	50	35.7	healthy controls	handgrip	50 % of MVC	Echo	HR, EF		15/19 high
Lev (1998)	Exercise-induced aortic flow parameters in early postmenopausal women and middle-aged men. J Intern Med, 243(4), 275-280.	Israel	15	55 52	female male	 2-hand bar dynamo- meter supine ergometer 2-hand bar dynamo- meter supine ergometer 	- 50 % of MVC - 50 W - 50 % of MVC - 50 W	Echo	HR, SET, TTP	2 different stress types in 2 different cohorts: isometric vs. dynamic exercise in men vs. women	12/19 moderate
Fisman (1991)	Pronounced reduction of aortic flow velocity and acceleration during heavy isometric exercise in coronary artery disease. Am J Cardiol, 68(5), 485-491.	Israel	48	48	male	2-hand bar dynamo- meter	50 % of MVC	Echo	HR, SVI, CI, SET, TTP		14/19 high
Bamrah (1991)	Static versus dynamic exercise: effects on Doppler echocardiographic indices of left ventricular performance. Clin Cardiol, 14(6), 481-488.	USA	12	60	-	- handgrip - supine ergometer	- 30 % of MVC - 160 W	Echo	HR, SV, CO	2 different stress types in the same cohort: isometric vs. dynamic exercise	10/19 moderate

Supplementary Material: Hemodynamic Changes during Stress Testing

Krzeminski	Effect of endurance	Poland	18	20.9	-	handgrip	30 % of	Echo	HR, SV,	9/17
(1989)	training on						MVC		SET, EF	medium
	cardiovascular response									
	to static exercise									
	performed with									
	untrained muscles. Int J									
	Sports Med, 10(5), 363-									
	367.									

Author	Publication	Location	Number of Patients	Mean age (years)	Type of AS	Type of Stress Test	Intensity of Stress	Imaging Modality	Relevant Outcomes reported	Comments	Quality
Pérez Del Villar (2017)	The Functional Significance of Paradoxical Low- Gradient Aortic Valve Stenosis: Hemodynamic Findings During Cardiopulmonary Exercise Testing. JACC Cardiovasc Imaging 10(1): 29-39.	Spain	20	77	paradoxic al low- gradient, severe	semisupine ergometer	symptom- limited	Echo	HR, SVI, CI, SET	Aortic valve area (AVA) <1cm ² and <0.6cm ² /m ²	9/17 moderate
Lancellotti (2012)	Determinants and prognostic significance of exercise pulmonary hypertension in asymptomatic severe aortic stenosis. Circulation, 126(7), 851- 859.	Belgium	105	71	asymp- tomatic severe	semisupine ergometer	symptom- limited	Echo	HR, EF	AVA <0.6cm²/m²	16/20 high
Donal (January 2011)	Impact of aortic stenosis on longitudinal myocardial deformation during exercise. Eur J Echocardiogr, 12(3), 235-241.	France			asymp- tomatic, moderate to severe	semisupine ergometer		Echo	HR, EF	AVA<1.2 or <1cm ² and <0.6cm ² /m ²	15/17 moderate
	255 241.		136 69	67	exercise test - ab- normal		- 96 W - 86 W			2 different cohorts: normal and abnormal exercise test	
					exercise test					Study also included in healthy group	

Table S3. Characteristics of the included studies for patients with aortic stenosis.

Supplementary Material: Hemodynamic Changes during Stress Testing

Marechaux (2010)	Usefulness of exercise- stress echocardiography for risk stratification of true asymptomatic patients with aortic valve stenosis. Eur Heart J, 31(11), 1390-1397.	Canada	135	64	asymp- tomatic, mode- rate	semisupine ergometer	symptom- limited; 90 W	Echo	HR, SV, EF	AVA <1.5cm ² or <0.9cm ² /m ²	13/18 high
Lancellotti (2008)	Determinants of an abnormal response to exercise in patients with asymptomatic valvular aortic stenosis. Eur J Echocardiogr, 9(3), 338- 343.	Belgium	68 60	69 69	asymp- tomatic, severe - normal exercise test - ab- normal exercise test	semisupine ergometer	symptom- limited	Echo	HR, EF	AVA <1cm ² 2 different cohorts: normal and abnormal exercise test	12/17 high
Legget (1996)	Gender differences in left ventricular function at rest and with exercise in asymptomatic aortic stenosis. Am Heart J 131(1): 94-100.	USA	45 23	62 64	asymp- tomatic , mode- rate - male - female	upright treadmill	exhaustion	Echo	HR, SV, CO	AVA $\leq 1.4 \text{ cm}^2 \text{ and}$ $\leq 0.7 \text{ cm}^2/\text{m}^2$ 2 different cohorts: male and female	14/19 high
Burwash (1994)	Flow dependence of measures of aortic stenosis severity during exercise. Journal of the American College of Cardiology, 24(5), 1342- 1350.	USA	66		asymp- tomatic	upright treadmill	symptom- limited	Echo	HR, SV, CO		10717 moderate

Otto (1992)	Physiologic changes with maximal exercise in asymptomatic valvular aortic stenosis assessed by Doppler echocardiography. J Am Coll Cardiol 20(5): 1160-1167.	USA	28	61	asymp- tomatic	upright treadmill	exhaustion	Echo	HR, SV, CO, SET		11/17 high
Mahfouz (2015)	Left ventricular restrictive filling pattern and the presence of contractile reserve in patients with low- flow/low-gradient severe aortic stenosis. Echocardiography, 32(1), 65-70.	Egypt	14	51	low-flow, low- gradient, severe, contrac- tile reserve	dobutamine	11 μg/kg/min	Echo	HR, SV, EF	AVA<1cm ²	13/19 moderate
Bartko (2013)	Two-dimensional strain for the assessment of left ventricular function in low flow-low gradient aortic stenosis, relationship to hemodynamics, and outcome: a substudy of the multicenter TOPAS study. Circ Cardiovasc Imaging, 6(2), 268-276.	Austria	47	73	low-flow, low- gradient, mode- rate to severe	dobutamine	20 μg/kg/min	Echo	HR, SV, EF	AVA $\leq 1.2 \text{ cm}^2 \text{ and}$ $\leq 0.6 \text{ cm}^2/\text{m}^2$	11/18 high
Takeda (1999)	The relation between transaortic pressure difference and flow during dobutamine stress echocardiography in patients with aortic stenosis. Heart, 82(1), 11-14.	UK	50	65.3	asymp- tomatic, mild to severe	dobutamine	29 μg/kg/min	Echo	HR, SV, CO		12/17 high

Lin (1998)	Dobutamine stress Doppler hemodynamics in patients with aortic stenosis: feasibility, safety, and surgical correlations. Am Heart J, 136(6), 1010-1016.	USA	27	74	severe	dobutamine	27 µg/kg/min	Echo	HR, SV, CO, EF	AVA <1cm ²	16/18 high
Tardif (1997)	Simultaneous determination of aortic valve area by the Gorlin formula and by transesophageal echocardiography under different transvalvular flow conditions. Evidence that anatomic aortic valve area does not change with variations in flow in aortic stenosis. J Am Coll Cardiol, 29(6), 1296-1302.	Canada	11	63	need for aortic valve repair	dobutamine	> 15% increase in CO; 5 - 20 µg/kg/min	Transeso- phageal Echo	HR, SV, CO, SET		10/17 moderate
Casale (1992)	Effects of dobutamine on Gorlin and continuity equation valve areas and valve resistance in valvular aortic stenosis. Am J Cardiol 1992;70:1175-9.	USA	12	81	severe	dobutamine	50 % increase in CO	Echo & Cardiac Cathe- terization	HR, SV, CO, SET	AVA <1cm ²	10/17 moderate
Little (2007)	Impact of blood pressure on the Doppler echocardiographic assessment of severity of aortic stenosis. Heart, 93(7), 848-855.	Canada	22	70	mild to severe	handgrip	40 % of max. voluntary contraction	Echo	HR, SV, CO		11/17 high

Author	Publication	Location	Number of Patients	Mean age (years)	State of CoA	Type of Stress Test	Intensity of Stress	Imaging Modality	Relevant Outcomes reported	Comments	Quality
Pedersen (2010)	Blood flow measured by magnetic resonance imaging at rest and exercise after surgical bypass of aortic arch obstruction. Eur J Cardiothorac Surg, 37(3), 658-661.	Denmark	7	18	bypass tube from Aorta asc. to Aorta desc.	supine ergometer	- 0.5 W/kg - 1 W/kg	MRI	CÎ	2 different stress intensities only median and ranges available	12/19 moderate
Kimball (1986)	Persistent ventricular adaptations in postoperative coarctation of the aorta. J Am Coll Cardiol, 8(1), 172-178.	Canada	25	26.1	surgical repair	supine exercise	exhaustion	Radio- nuclide Angio- graphy	HR, EF, TTP	TTP calculated	12/19 moderate
Carpenter (1985)	Left ventricular hyperkinesia at rest and during exercise in normotensive patients 2 to 27 years after coarctation repair. J Am Coll Cardiol 6(4): 879- 886.	USA	32	27	surgical repair	supine ergometer	exhaustion	Echo and Angio- graphy	HR, EF	hyperdynami c left ventricle	12/19 moderate
Weber (1993)	Discrepancies in aortic growth explain aortic arch gradients during exercise. J Am Coll Cardiol, 21(4), 1002- 1007.	USA	8	12	surgical repair	isopro- terenol	0.05 - 0.1 μg/kg/min	Angio- graphy	HR, CI		10/17 moderate

Table S4. Characteristics of the included studies for patients with aortic coarctation.

	Dynamic (exercise	Pharmacolog	ical stress	Isometric e	exercise	Kruskal- Wallis- Test
Nafahaa		Study arms reporting variable (N of tests)		Study arms reporting variable (N of tests)		Study arms reporting variable (N of tests)	P Value
N of stress tests overall		11 (755)		6 (161)		1 (22)	
Age, years	67 (64-69)	10 (689)	69.2 (63-74)	6 (161)	70 (70-70)	1 (22)	0.726
Male, %	64.4 (37-66.4)	8 (561)	64.1 (41.6-66.6)	6 (161)	73	1 (22)	0.511
BSA, m ²	1.8 (1.8-1.8)	7 (533)	1.9 (1.9-1.9)	1 (47)	1.96 (1.96-1.96)	1 (22)	
BMI, kg/m ²	26.3 (26.1-27.8)	4 (223)	N/A	-	N/A	-	
Resting HR, bpm	71† (70-74)	11 (755)	75.5 †, ‡ (72-76)	6 (161)	62‡ (62-62)	1 (22)	0.02*
Resting SV, ml	90.5† (83-103)	6 (317)	55† (51-59)	6 (161)	104 (104-104)	1 (22)	0.014*
Resting CO, l/min	6.3† (5.6-6.5)	5 (182)	4.0† (3.72-4.65)	4 (100)	6.34 (6.34-6.34)	1 (22)	0.062
Resting SET, ms	330.5 (328-333)	2 (48)	327.5 (305-350)	2 (23)	N/A	-	0.999
Light intensity, %	N/A	-	7.5	1 (12)	100	1 (22)	
Moderate intensity, %	27.2	2 (205)	44.7	3 (72)	N/A	-	
High intensity, %	72.8	9 (550)	47.8	2 (77)	N/A	-	

Table S5. Baseline characteristics for patients with aortic stenosis.

Values are reported as median (interquartile ranges). BMI indicates body mass index; BSA, body surface area; HR, heart rate; SV, stroke volume; CO, cardiac output; SET, systolic ejection time. * p<0.05 overall; † p<0.05 for pairwise comparison of dynamic exercise and pharmacological stress (Dunn's test); ‡ p<0.05 for pairwise comparison of pharmacological stress and isometric exercise (Dunn's test).

	ouipui i	Heart Ra	•	Stroke Volu		Cardiac O		Systolic Ejectio	n Time
		[bpm]		[ml]		[1/min]	-	[ms]	
		Mean change	N	Mean change	Ν	Mean change	N	Mean change	N
		(95% CI)	1,	(95% CI)	11	(95% CI)	11	(95% CI)	11
TT 141		(95% CI)		(9570 CI)		(95 % CI)		(95% CI)	
Health	-	1		1		,			
Light	Dynamic		198	6.59	122	2.68	152	-20.92	63
		(27.82, 35.74)		(2.58, 10.61)		(1.72, 3.64)		(-45.62, 3.78)	
	Dobu-	13.71	105	5.47	75	1.54	82	N/A	-
	tamine	(7.87, 19.56)		(0.3, 10.63)		(0.69, 2.38)			
	Isometric	18.44	229	-4.17	101	0.82	83	-0.38	96
		(10.74, 26.14)		(-14.37, 6.03)		(-0.26, 1.9)		(-19.07, 18.32)	
Mode-	Dynamic	49.57	271	11.64	181	4.67	240	-51.59	33
rate		(40.03, 59.1)		(5.87, 17.42)		(3.5, 5.84)		(-100.58, -2.61)	
	Dobu-	42.83	205	6.29	101	4.42	133	N/A	-
	tamine	(36.94, 48.72)		(-2.0, 14.58)		(3.65, 5.19)			
High	Dynamic	89.31	787	21.31	463	10.45	445	-77.83	111
0		(81.46, 97.17)		(13.42, 29.21)		(8.04, 12.85)		(-95.88, -59.78)	
	Dobu-	53.58	135	0.98	55	4.98	62	-90.0	20
	tamine	(36.53, 70.64)		(-9.32, 11.27)		(2.94, 7.01)		(-103.71,-76.29)	
Aortic	stenosis					1			
Light	Dynamic	N/A	-	N/A	-	N/A	-	N/A	-
	Dobu-	14.0	12	8.0	12	1.33	12	-41	12
	tamine	(9.82, 18.18)		(3.82, 12.18)		(1.11, 1.55)		(-52.29, -29.71)	
	Isometric	5.0	22	-4.0	22	0.21	22	N/A	-
		(-1.17, 11.17)		(-16.43, 8.43)		(-0.64, 1.06)			
Mode-	Dynamic	46.45	205	N/A	-	N/A	-	N/A	-
rate		(42.63, 50.27)							
	Dobu-	18.66	72	13.11	72	1.7	11	-40	11
	tamine	(2.38, 34.93)		(7.99, 18.23)		(0.74, 2.66)		(-45.33, -34.67)	
High	Dynamic	55.32	550	-0.96	317	5.3	162	-58.94	48
_		(47.31, 63.33)		(-5.27, 3.35)		(3.46, 7.14)		(-127.52, 9.63)	
	Dobu-	42.52	77	14.06	77	3.92	77	N/A	-
	tamine	(32.77, 52.28)		(-1.62, 29.74)		(2.45, 5.39)			
I								1	

Table S6. Overview of pooled mean changes and 95% CIs of heart rate, stroke volume, cardiac output and systolic ejection time in healthy and patients with aortic stenosis.

N indicates number of stress examinations included into analysis; bpm, beats per minute; ml, milliliter, l/min, liters per minute; ms, milliseconds; N/A, no data available.

HR Change	Multivariable	95% CI	P value
	Estimate		
Type of Intervention	-5.08	-11.924 to 1.745	0.143
(dynamic,			
pharmacological or			
isometric stress)			
Intensity Level (light,	28.6	23.459 to 33.705	<0.001
moderate, high)			
Athlete (yes/no)	10.6	-3.265 to 24.467	0.133
Disease Condition	-4.83	-12.611 to 2.952	0.221
(healthy, CoA or AS)			
Mean Age (years)	-0.297	-0.543 to -0.0503	0.019

Table S7. Multivariate meta-regression analysis for potential variables impacting heterogeneity of HR change.

Number of observations: 122; Between-study variance: $T^2=104.5$, Residual variation due to heterogeneity: I² residual=20.11%; Proportion of between study variance explained: Adjusted R²=86.13%; Model Fit for all five covariates: 43.41; p<0.000.

Author	Publication	Rej	porti	ng									erna idity	1	Inte	ernal	valid	lity - ∣	bias				ernal foun		lity -			Р.
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27
Barber (2016)	Magnetic Resonance- Augmented Cardiopulmonary Exercise Testing: Comprehensively Assessing Exercise Intolerance in Children With Cardiovascular Disease.	1	1	1	1	2	1	1	1		1	0	0	1			1			1	1	0	1			1		0
Roberts (2015)	Real-time aortic pulse wave velocity measurement during exercise stress testing.	1	1	1	1		1	1	0		1	0	0	1			1			1	0	0	0					0
Forouzan (2015)	Non-invasive measurement using cardiovascular magnetic resonance of changes in pulmonary artery stiffness with exercise.	1	1	0	1		1	1	0		0	0	0	1			1			1	1	0	0					0
Claessen (2015)	Pulmonary vascular and right ventricular reserve in patients with normalized resting hemodynamics after pulmonary endarterectomy	1	1	1	1	2	1	1	0		1	0	0	1			1			1	1	1	0			0		0
Barber (2015)	MR augmented cardiopulmonary exercise testing-a novel approach to assessing cardiovascular function.	1	1	1	1		1	1	0		1	0	0	1			1			0	0	1	1					0

 Table S8. Modified version of the Downs and Black checklist.

Steding-	Moderate intensity supine	1	1	0	1		1	1	0	0	0	0	1		1		1	1	0	0			0
Ehrenborg	exercise causes decreased																						
(2013)	cardiac volumes and increased																						
	outer volume variations: a																						
	cardiovascular magnetic																						
	resonance study																						
Weber	High-resolution phase-contrast	1	1	1	1		1	1	0	1	0	0	1		1		1	0	0	0			1
(2011)	MRI of aortic and pulmonary																						
	blood flow during rest and																						
	physical exercise using a MRI																						
	compatible bicycle ergometer.																						
Punta-	Reduced peripheral arterial	1	1	1	1	2	1	1	1	1	0	0	1		1		1	1	0	0		1	0
wangkoon	blood flow with preserved																						
(2009)	cardiac output during																						
	submaximal bicycle exercise in																						
	elderly heart failure																						
Roest	Biventricular response to supine	1	1	0	1		1	1	0	0	0	0	1		1		1	1	0	0			0
(March	physical exercise in young																						
2001)	adults assessed with ultrafast																						
	magnetic resonance imaging																						
Roest	Prolonged cardiac recovery from	1	1	0	1	2	1	1	0	0	0	0	1		1		1	1	0	0		1	0
(November	exercise in asymptomatic adults																						
2001)	late after atrial correction of																						
	transposition of the great																						
	arteries: evaluation with																						
	magnetic resonance flow																						l
	mapping																						I
Niezen	Measurement of aortic and	1	1	0	1		1	1	0	0	0	0	1		1		0	0	0	0			0
(1998)	pulmonary flow with MRI at																						l
	rest and during physical																						
	exercise.																						ļ
Stephen-	Changes in blood volume	1	1	1	1	2	1	1	0	0	0	0	1		1		0	1	0	0		1	0
sen (2016)	shunting in patients with atrial																						
	septal defects: Assessment of																						l
	heart function with cardio-																						
	vascular magnetic resonance																						
	during dobutamine stress																						1

Pingitore (2013)	Influence of preload and afterload on stroke volume response to low-dose dobutamine stress in patients with non-ischemic heart failure: a cardiac MR study	1	1	1	1	2	1	1	1	1	0	0	1		1		1	1	0	0		0	0
Ahtarovski (2013)	Termination of dobutamine infusion causes transient rebound left heart diastolic dysfunction in healthy elderly women but not in men: a cardiac magnetic resonance study.	1	1	0	1	2	1	1	0	1	0	0	1		1		1	0	0	0		1	0
Ahtarovski (2012)	Left atrial and ventricular function during dobutamine and glycopyrrolate stress in healthy young and elderly as evaluated by cardiac magnetic resonance.	1	1	1	1	2	1	1	0	1	0	0	1		1		1	0	0	0		1	0
Schuster (2011)	Cardiovascular magnetic resonance myocardial feature tracking detects quantitative wall motion during dobutamine stress."	1	1	0	1		1	1	1	0	0	0	1		1		1	0	0	0			0
Manda- paka (2011)	Simultaneous measurement of left and right ventricular volumes and ejection fraction during dobutamine stress cardiovascular magnetic resonance.	1	1	0	1		1	1	0	1	0	0	1		1		1	1	0	0			0
Oosterhof (2005)	Disparity between dobutamine stress and physical exercise magnetic resonance imaging in patients with an intra-atrial correction for transposition of the great arteries.	1	1	1	1	2	1	1	0	1	0	0	1		1		0	0	0	0		0	0

Dodge-	Comparable systemic	1	1	0	1	1	1	1	0	0	0	0	1		1		1	1	0	0		0	0
Khatami	ventricular function in healthy																						
(2002)	adults and patients with																						
	unoperated congenitally																						
	corrected transposition using																						
	MRI dobutamine stress testing.																						
Pennell	Assessment of magnetic	1	1	0	1	1	1	1	0	1	0	0	1		1		1	0	1	0		1	0
(1995)	resonance velocity mapping of																						
	global ventricular function																						
	during dobutamine infusion in																						
	coronary artery disease.																						
van Rugge	Quantitation of global and	1	1	1	1		1	1	1	0	0	0	1		1		1	0	0	0			0
(1993)	regional left ventricular function																						
	by cine magnetic resonance																						
	imaging during dobutamine																						
	stress in normal human subjects.																						
Knobels-	Isometric handgrip exercise	1	1	1	1		1	1	0	1	0	0	1		1		1	0	0	0			0
dorff-	during cardiovascular magnetic																						
Brenken-	resonance imaging: set-up and																						
hoff	cardiovascular effects.																						
(2013)																							
D'Alto	Echocardiographic assessment	1	1	1	1		1	1	0	1	0	0	1		1		1	0	0	0			0
(2017)	of right ventricular contractile																						
	reserve in healthy subjects.																						
D'Andrea	Right atrial morphology and	1	1	1	1	2	1	1	0	0	0	0	1		1		1	1	1	0		1	0
(2016)	function in patients with																						
	systemic sclerosis compared to																						
	healthy controls: a two-																						
	dimensional strain study.																						
Wang	Changes of ventricular and	1	1	1	1	2	1	1	0	1	0	0	1		1		0	0	1	0		1	1
(2014)	peripheral performance in																						
	patients with heart failure and																						
	normal ejection fraction:																						
	insights from ergometry stress																						
	echocardiography.				1	1					1												
					1	1																	

Khouri (2014)	Utility of 3-dimensional echocardiography, global longitudinal strain, and exercise stress echocardiogra-phy to detect cardiac dysfun-ction in breast cancer patients treated with doxorubicin-containing adjuvant therapy.	1	1	1	1	2	1	1	0	1	0	0	1		1		1	0	1	1		1	0
Tan (2013)	Exercise-induced torsional dyssynchrony relates to impaired functional capacity in patients with heart failure and normal ejection fraction	1	1	1	1	2	1	1	0	1	1	0	1		1		0	1	1	0		0	0
Klasnja (2013)	Cardiac power output and its response to exercise in athletes and non-athletes	1	1	0	1	2	1	1	0	0	0	0	1		1		1	0	0	0		1	0
Henein (2013)	Impaired left ventricular systolic function reserve limits cardiac output and exercise capacity in HFpEF patients due to systemic hypertension	1	1	1	1	2	1	1	1	0	1	0	1		1		1	1	0	0		1	0
Lee (2012)	Exercise with a twist: left ventricular twist and recoil in healthy young and middle-aged men, and middle-aged endurance-trained men	1	1	1	1	2	1	1	0	0	0	0	1		1		1	0	0	0		0	0
La Gerche (2012)	Maximal oxygen consumption is best predicted by measures of cardiac size rather than function in healthy adults	1	1	0	1		1	1	0	1	0	0	1		1		1	1	0	0			0
Cheung (2012)	Dynamic dyssynchrony and impaired contractile reserve of the left ventricle in beta- thalassaemia major: an exercise echocardiographic study.	1	1	0	1	2	1	1	0	1	0	0	1		1		1	1	1	0		1	0

(anamy 2011) longitudinal myocardial deformation during exercise. I <thi< th=""> <th< th=""><th>Donal</th><th>Impact of aortic stenosis on</th><th>1</th><th>1</th><th>1</th><th>1</th><th>2</th><th>1</th><th>1</th><th>1</th><th>1</th><th>0</th><th>0</th><th>1</th><th></th><th>1</th><th></th><th>1</th><th>1</th><th>0</th><th>1</th><th></th><th></th><th>0</th></th<></thi<>	Donal	Impact of aortic stenosis on	1	1	1	1	2	1	1	1	1	0	0	1		1		1	1	0	1			0
2011. deformation during exercise. I		-										-	_											
Donal (May (May principal adaptation in trained and sedentary men after 50 and before: 35 years of age 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 0 0 1 <th1< th=""> 1 <th1< th=""></th1<></th1<>																								1
(May 2011) function adaptation in trained and selentary men after 50 and before 35 years of age Image:	,	Ç	1	1	1	1	2	1	1	0	0	0	0	1		1		1	1	0	0		1	0
2011. and sedentary men after 50 and before 35 years of age <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>_</td> <td></td> <td>Ť</td> <td></td> <td>÷</td> <td>Ĩ</td> <td>_</td> <td></td> <td>_</td> <td></td> <td>-</td> <td>_</td> <td>-</td> <td>Ť</td> <td></td> <td></td> <td></td>		1					-	_		Ť		÷	Ĩ	_		_		-	_	-	Ť			
before 35 years of age vo <		-																						1
Bombardi- int (2011) Abnormal shortened diastolic time length at increasing heart rates in patients with abnormal exercise-induced increase in pulmoary artery pressure. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0 0 1 <		•																						1
ni (2011) time length at increasing heart rates in patients with abnormal exercise induced increase in pulmonary artery pressure. v<	Bombardi-		1	1	1	1	2	1	1	1	0	0	0	1		1		1	1	1	0		0	0
rates in patients with abromal exercise-induced increase in jumonary artery pressure. image: show output to left image: show output to le							-	_		_		÷	Ĩ	_		_		_	_		Ť		Ĩ	
exercise-induced increase in pulmonary artery pressure. I	()	u																						1
inducing artery pressure. indicinal masks and index oper output to left ventricular contradie left ventricular masks and index oper oper output to left ventricular masks and index oper oper ventricular m		-																						1
Dini (2010) Peak power output to left ventricular mass: an index to predict ventricular pumping performance and morbidity in advanced heart failure 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0																								
(2010) ventricular mass: an index to predict ventricular pumping performance and morbidity in advanced heart failure ventricular mass: an index to predict ventricular pumping performance and morbidity in advanced heart failure ventricular mass: an index to predict ventricular pumping performance and morbidity in advanced heart failure ventricular mass: an index to predict ventricular pumping performance and morbidity in advanced heart failure ventricular mass: an index to predict ventricular pumping performance and morbidity in advanced heart failure ventricular mass: an index to predict ventricular pumping performance and morbidity in advanced heart failure ventricular mass: an index to predict ventricular pumping performance and morbidity in advanced heart failure ventricular mass: an index to predict ventricular pumping performance and morbidity in advanced heart failure ventricular mass: an index to predict ventricular contractile ventricular mass: an index to predict ventricular gradients during prolonged exercise in middle- adventee during prolonged exercise in middle- adventee during intraventricular gradients during exercise ventricular mass: an index to predict ventricular failer ventricular mass: an index to predict ventricular failer ventricular mass: an index to predict ventricular contractile ventricular mass	Dini		1	1	1	1	2	1	1	1	1	0	0	1		1		1	0	1	0		0	0
predict ventricular pumping performance and morbidity in advanced heart failure I <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td>_</td><td></td><td>÷</td><td>Ĩ</td><td></td><td></td><td>_</td><td></td><td>_</td><td>, in the second second</td><td></td><td>Ť</td><td></td><td>Ť</td><td></td></th<>							-			_		÷	Ĩ			_		_	, in the second		Ť		Ť	
performance and morbidity in advanced heart failure I <thi< th=""> I <thi< th=""></thi<></thi<>																								
advanced heart failure i <td></td> <td>1</td>																								1
Argiento (2010) Exercise stress echocardiography for the study of the pulmonary circulation 1		-																						
(200) echocardiography for the study of the pulmonary circulation I <t< td=""><td>Argiento</td><td></td><td>1</td><td>1</td><td>1</td><td>1</td><td></td><td>1</td><td>1</td><td>0</td><td>0</td><td>0</td><td>0</td><td>1</td><td></td><td>1</td><td></td><td>1</td><td>0</td><td>0</td><td>0</td><td></td><td></td><td>0</td></t<>	Argiento		1	1	1	1		1	1	0	0	0	0	1		1		1	0	0	0			0
of the pulmonary circulation I <th< td=""><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td>-</td><td>_</td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td></th<>	-									-		-	_						_					
Schuster (2009) Cardiac function during exercise in obese prepubertal boys: effect of degree of obesity 1																								1
(2009) in obese prepubertal boys: effect <td>Schuster</td> <td></td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>2</td> <td>1</td> <td>1</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>1</td> <td></td> <td>1</td> <td></td> <td>1</td> <td>1</td> <td>1</td> <td>0</td> <td></td> <td>1</td> <td>0</td>	Schuster		1	1	1	1	2	1	1	0	0	0	0	1		1		1	1	1	0		1	0
of degree of obesity i		•																						1
Goodman (2009)Left ventricular contractile function is preserved during prolonged exercise in middle- aged men1111111101010101000Cotrim (2008)Do healthy individuals develop intraventricular gradients during exertion?111111111111101010000Bombardi- ni (2008)Diastolic time - frequency relation in the stress echo lab: filling timing and flow at1111111111000011100000	X • • • • /																							
(2009)function is preserved during prolonged exercise in middle- aged menii	Goodman	. .	1	1	1	1		1	1	0	0	0	0	1		1		1	0	1	0			0
prolonged exercise in middle- aged men in in <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td></th<>																								1
Arrow aged men Image of men <																								1
Cotrim Do healthy individuals develop 1		1 0																						
(2008)intraventricular gradients during exertion?II <th< td=""><td>Cotrim</td><td></td><td>1</td><td>1</td><td>1</td><td>1</td><td></td><td>1</td><td>1</td><td>1</td><td>0</td><td>0</td><td>0</td><td>1</td><td></td><td>1</td><td></td><td>1</td><td>1</td><td>0</td><td>0</td><td></td><td></td><td>0</td></th<>	Cotrim		1	1	1	1		1	1	1	0	0	0	1		1		1	1	0	0			0
exertion?II<		•										-	_											
ni (2008) relation in the stress echo lab: filling timing and flow at	<pre></pre>																							
ni (2008) relation in the stress echo lab: filling timing and flow at	Bombardi-	Diastolic time - frequency	1	1	1	1		1	1	1	0	0	0	1		1		1	1	0	0			0
filling timing and flow at	ni (2008)																							1
	. ,	filling timing and flow at																						1
																								1
																								1

De Souza (2007)	A stress echocardiography study of cardiac function during progressive exercise in pediatric oncology patients treated with anthracyclines.	1	1	1	1	2	1	1		0	0	0	1		1		0	0	1	1		0	0
Rowland (2005)	Effect of pectus excavatum deformity on cardiorespiratory fitness in adolescent boys.	1	1	0	1	2	1	1	0	0	0	0	1		1		1	1	0	0		1	0
Sagiv (2000)	Left ventricular contractility and function at peak aerobic and anaerobic exercises.	1	1	1	1		1	1	1	0	0	0	1		1		1	1	1	0			0
Auerbach (1999)	Attenuated responses of Doppler-derived hemodynamic parameters during supine bicycle exercise in heart transplant recipients.	1	1	0	1	2	1	1	0	1	0	0	1		1		1	0	0	0		0	0
Fisman (1990)	Altered left ventricular volume and ejection fraction responses to supine dynamic exercise in athletes.	1	1	1	1	2	1	1	1	1	0	0	1		1		1	1	1	0		1	0
Ginzton (1989)	Effect of long-term high intensity aerobic training on left ventricular volume during maximal upright exercise.	1	1	1	1	1	1	1	0	0	0	0	1		1		1	1	1	0		0	0
Thompson (1987)	Comparison of ventricular volumes in normal and post- myocardial infarction subjects.	1	1	1	1	1	1	1	1	0	0	0	1		1		0	1	0	0		1	0
Mehdirad (1987)	Evaluation of left ventricular function during upright exercise: correlation of exercise Doppler with postexercise two- dimensional echocardiographic results.	1	1	1	1	1	1	1	1	0	0	0	1		1		1	1	0	0		0	0
Gardin (1986)	Studies of Doppler aortic flow velocity during supine bicycle exercise.	1	1	1	1		1	1	1	0	0	0	1		1		1	0	0	0			0

Bryg (1986)	Effect of coronary artery disease on Doppler-derived parameters of aortic flow during upright exercise	1	1	0	1	1	1	1	1	0	0	0	1		1		1	1	0	0		0	0
Lau (2014)	Dobutamine stress echocardiography for the assessment of pressure-flow relationships of the pulmonary circulation	1	1	1	1	2	1	1	0	1	0	0	1		1		1	1	0	0		1	0
Maras (2013)	Patterns of cardiac dysfunction coinciding with exertional breathlessness in hypertrophic cardiomyopathy	1	1	1	1	1	1	1	1	0	0	0	1		1		1	0	0	0		0	0
Brili (2007)	Dobutamine stress echocardiography for the evaluation of cardiac reserve late after Fontan operation	1	1	0	1	1	1	1	1	1	0	0	1		1		1	0	1	0		1	0
Arshad (2004)	Systole-diastole mismatch in hypertrophic cardiomyopathy is caused by stress induced left ventricular outflow tract obstruction.	1	1	0	1	2	1	1	1	0	0	0	1		1		1	0	0	0		0	0
Cnota (2003)	Cardiovascular physiology during supine cycle ergometry and dobutamine stress.	1	1	1	1		1	1	1	1	0	0	1		1		0	0	0	0			0
Duncan (2001)	Long axis electromechanics during dobutamine stress in patients with coronary artery disease and left ventricular dysfunction	1	1	1	1	2	1	1	1	0	0	0	1		1		1	1	0	0		0	0
Marmor (1996)	Evaluation of contractile reserve by dobutamine echocardiography: noninvasive estimation of the severity of heart failure.	1	1	1	1	0	1	1	1	1	1	0	1		1		0	1	1	0		0	0

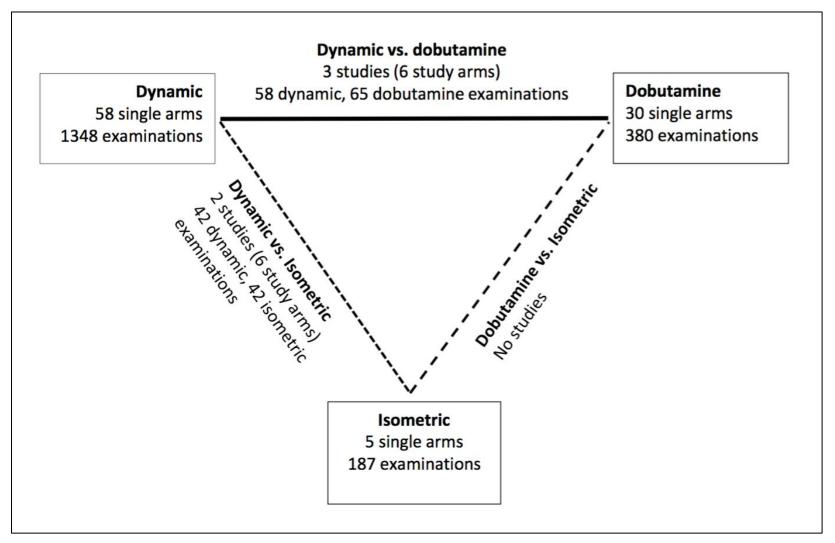
Blom-	Cardiovascular effects of	1	1	1	1		1	1	1	0	1	0	1		1		1	0	0	0			0
strand	dobutamine stress testing in																						
(1995)	healthy women.																						
Weiner	The impact of isometric	1	1	1	1		1	1	1	1	0	0	1		1		0	0	1	0			0
(2012)	handgrip testing on left																						
	ventricular twist mechanics.																						
Bozkurt	Echocardiographic findings in	1	1	1	1	2	1	1	0	1	0	0	1		1		1	1	1	0		1	0
(2006)	patients with Behcet's disease.																						
Lev (1998)	Exercise-induced aortic flow	1	1	1	1	1	1	1	0	0	1	0	1		1		1	0	1	0		0	0
	parameters in early																						
	postmenopausal women and																						
	middle-aged men.																						
Fisman	Pronounced reduction of aortic	1	1	1	1	1	1	1	1	0	0	0	1		1		1	1	1	0		1	1
(1991)	flow velocity and acceleration																						
	during heavy isometric exercise																						
	in coronary artery disease.																						
Bamrah	Static versus dynamic exercise:	1	1	1	1	0	1	1	1	0	0	0	1		1		1	0	0	0		0	0
(1991)	effects on Doppler																						
	echocardiographic indices of left																						
	ventricular performance.																						
Krzemin-	Effect of endurance training on	1	1	0	1		1	1	0	1	0	0	1		1		1	0	0	0			0
ski (1989)	cardiovascular response to static																						
	exercise performed with																						
	untrained muscles.																						
					1		1																
					1																		

Aortic Ster	nosis																						
Pérez Del Villar (2017)	The Functional Significance of Paradoxical Low-Gradient Aortic Valve Stenosis: Hemo- dynamic Findings During Cardiopulmonary Exercise Testing.	1	1	1	1		1	1	0		0	0	0	1		1	1	0	0	0			0
Lancellotti (2012)	Determinants and prognostic significance of exercise pulmo- nary hypertension in asymp- tomatic severe aortic stenosis.	1	1	1	1	2	1	1	1	1	1	0	0	1		1	1	0	1	0		1	0
Marechaux (2010)	Usefulness of exercise-stress echocardiography for risk stratification of true asymp- tomatic patients with aortic valve stenosis.	1	1	1	1		1	1	1	1	1	0	0	1		1	1	0	1	0			0
Lancellotti (2008)	Determinants of an abnormal response to exercise in patients with asymptomatic valvular aortic stenosis.	1	1	1	1		1	1	1		1	0	0	1		1	1	1	0	0			0
Legget (1996)	Gender differences in left ventricular function at rest and with exercise in asymptomatic aortic stenosis.	1	1	1	1	2	1	1	0		1	0	0	1		1	0	1	0	1		1	0
Burwash (1994)	Flow dependence of measures of aortic stenosis severity during exercise.	1	1	1	1		1	1	0		1	0	0	1		1	1	0	0	0			0
Otto (1992)	Physiologic changes with maximal exercise in asymp- tomatic valvular aortic stenosis assessed by Doppler echocardiography.	1	1	1	1		1	1	1		1	0	0	1		1	0	1	0	0			0
Mahfouz (2015)	Left ventricular restrictive filling pattern and the presence of contractile reserve in patients with low-flow/low-gradient severe aortic stenosis.	1	1	1	1	2	1	1	0		1	0	0	1		1	1	0	0	0		1	0

Bartko	Two-dimensional strain for the	1	1	1	1	1	1	0	1	1	0	0	1		1		1	0	0	0			0
(2013)	assessment of left ventricular																						-
(/	function in low flow-low																						
	gradient aortic stenosis,																						
	relationship to hemodynamics,																						
	and outcome: a substudy of the																						
	multicenter TOPAS study.																						
Takeda	The relation between transaortic	1	1	1	1	1	1	1		1	0	0	1		1		1	0	0	1			0
(1999)	pressure difference and flow																						
	during dobutamine stress																						
	echocardiography in patients																						
	with aortic stenosis.																						
Lin (1998)	Dobutamine stress Doppler	1	1	1	1	1	1	1	1	1	1	0	1		1		1	1	1	1			0
	hemodynamics in patients with																						
	aortic stenosis																						
Tardif	Simultaneous determination of	1	1	1	1	1	1	1		0	0	0	1		1		1	0	0	0			0
(1997)	aortic valve area by the Gorlin																						
	formula and by transesophageal																						
	echocardiography under																						
	different transvalvular flow																						
	conditions. Evidence that																						
	anatomic aortic valve area does																						
	not change with variations in																						
	flow in aortic stenosis.										_								_				
Casale	Effects of dobutamine on Gorlin	1	1	1	1	1	1	1		0	0	0	1		1		1	0	0	0			0
(1992)	and continuity equation valve																						
	areas and valve resistance in																						
X 11	valvular aortic stenosis	1	1	1	1	1	1	1		0	0	0	1		1		1	0	1	0			0
Little	Impact of blood pressure on the	1	1	1	1	1	1	1		0	0	0	1		1		1	0	1	0			0
(2007)	Doppler echocardiographic																						
	assessment of severity of aortic																						
	stenosis.																						
			1	1	1	1	1	1	1				1		I			L		1			

Aortic Coa	arctation																						
Pedersen	Blood flow measured by	1	1	1	1	1	1	1	0	0	0	0	1		1		1	1	0	0		1	0
(2010)	magnetic resonance imaging at																						
	rest and exercise after surgical																						
	bypass of aortic arch																						
	obstruction.																						
Kimball	Persistent ventricular	1	1	1	1	1	1	1	0	0	0	0	1		1		1	0	1	0		1	0
(1986)	adaptations in postoperative																						
	coarctation of the aorta.																						
Carpenter	Left ventricular hyperkinesia at	1	1	1	1	2	1	1	0	0	1	0	1		1		1	0	0	0		0	0
(1985)	rest and during exercise in																						
	normotensive patients 2 to 27																						
	years after coarctation repair.																						
Weber	Discrepancies in aortic growth	1	1	1	1		1	1	1	0	0	0	1		1		1	0	0	0			0
(1993)	explain aortic arch gradients																						
	during exercise.																						

Reporting: 1. Hypothesis/aims/objectives clearly stated **2**. Main outcome measures clearly described **3**. Characteristics of patients/subjects clearly described **4**. Interventions of interest clearly described **5**. Distribution of principal confounders in each group clearly described **6**. Main findings clearly described **7**. Estimates of random variability in the data provided **8**. Important adverse events reported **9**. Characteristics of patients lost to follow-up described **10**. Actual probability values reported


External validity: 11. Participants approached representative of entire population **12**. Participants recruited representative of entire population **13**. Staff, places and facilities representative of majority of population

Internal validity-bias: 14. Blinding of study subjects 15. Blinding of assessors 16. Data based on data-dredging clearly stated 17. Adjustment of different length of follow-up or duration between case and control 18. Appropriate statistical tests used 19. Compliance to intervention reliable 20. Main outcome measure reliable and valid

Internal validity-confounding: 21. Intervention groups or case-controls recruited from same population 22. Intervention groups or case-controls recruited at the same time 23. Study subjects randomized to the interventions 24. Was concealed randomization to allocation undertaken 25. Adequate adjustment made in the analysis of confounders 26. Patient losses accounted for

Power (P.): 27. Sufficiently powered cohort size

Supplementary Figures

Figure S1. Network of evidence for findings in healthy subjects (adapted from Salcher et al., Circ Cardiovasc Interv. 2016; 9). Different types of stress testing (dynamic, isometric, pharmacological stress) are shown at the edges. Lines connecting the edges represent the limited number of studies directly comparing the different stress types to each other.

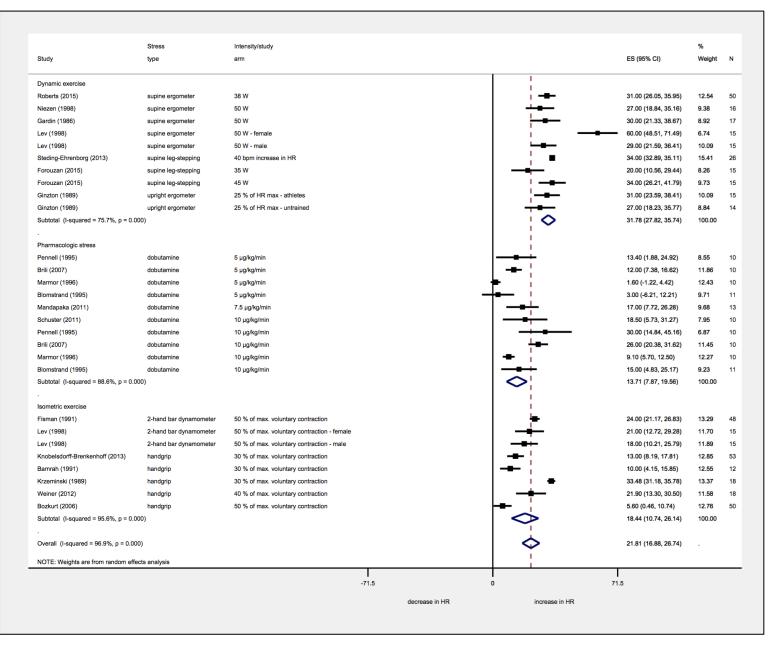


Figure S2. HR Changes [bpm] in healthy subjects for light intensity stress.

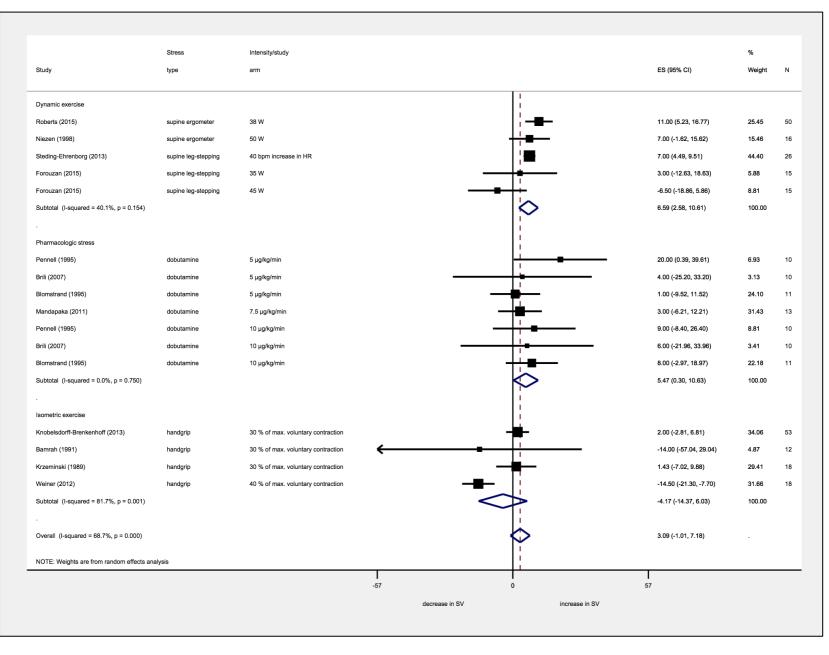


Figure S3. SV Changes [ml] in healthy subjects for light intensity stress.

	Stress	Intensity/study						%	
Study	type	arm					ES (95% CI)	Weight	١
Dynamic exercise						1			
Roberts (2015)	supine ergometer	38 W					3.90 (3.17, 4.63)	16.19	5
Niezen (1998)	supine ergometer	50 W				┿═┈	2.30 (1.66, 2.94)	16.54	1
Weber (2011)	supine ergometer	0 load		-	-	<u> </u>	0.36 (-1.62, 2.34)	10.13	1
Weber (2011)	supine ergometer	40 % increase in HR			· · ·		2.54 (1.05, 4.03)	12.46	2
Steding-Ehrenborg (2013)	supine leg-stepping	40 bpm increase in HR					4.20 (3.97, 4.43)	17.69	2
Forouzan (2015)	supine leg-stepping	35 W			-		1.95 (0.61, 3.29)	13.22	1
Forouzan (2015)	supine leg-stepping	45 W			· · ·		2.30 (1.06, 3.54)	13.77	1
Subtotal (I-squared = 90.0%, p = 0.000))					\langle	2.68 (1.72, 3.64)	100.00	
Pharmacologic stress									
Pennell (1995)	dobutamine	5 µg/kg/min			· · ·		2.60 (1.04, 4.16)	11.07	1
Brili (2007)	dobutamine	5 µg/kg/min					1.60 (-0.25, 3.45)	9.60	1
Marmor (1996)	dobutamine	5 µg/kg/min			_ + _		-0.07 (-0.72, 0.58)	16.05	1
Blomstrand (1995)	dobutamine	5 µg/kg/min			_ + =		0.30 (-0.66, 1.26)	14.40	1
Pennell (1995)	dobutamine	10 µg/kg/min				_	3.60 (2.15, 5.05)	11.65	1
Brili (2007)	dobutamine	10 µg/kg/min			-		3.10 (0.74, 5.46)	7.47	1
Marmor (1996)	dobutamine	10 µg/kg/min				⊷¦	1.14 (0.58, 1.70)	16.43	1
Blomstrand (1995)	dobutamine	10 µg/kg/min			-		1.70 (0.55, 2.85)	13.33	1
Subtotal (I-squared = 79.4%, p = 0.000))				<	\bigcirc	1.54 (0.69, 2.38)	100.00	
						- 1			
Isometric exercise									
Knobelsdorff-Brenkenhoff (2013)	handgrip	30 % of max. voluntary contraction				- -	1.50 (1.13, 1.87)	45.20	5
Bamrah (1991)	handgrip	30 % of max. voluntary contraction					0.10 (-2.91, 3.11)	10.13	1
Weiner (2012)	handgrip	40 % of max. voluntary contraction			-∎-		0.30 (-0.11, 0.71)	44.67	1
Subtotal (I-squared = 89.2%, p = 0.000))					\geq	0.82 (-0.26, 1.90)	100.00	
Overall (I-squared = 96.5%, p = 0.000))						1.88 (0.99, 2.77)		
	to opolyzia					T I			
NOTE: Weights are from random effect	ts analysis		I			1	I		
			-5.46		0		5.46		
				decrease in CO		increase in CO			

Figure S4. CO Changes [l/min] in healthy subjects for light intensity stress.

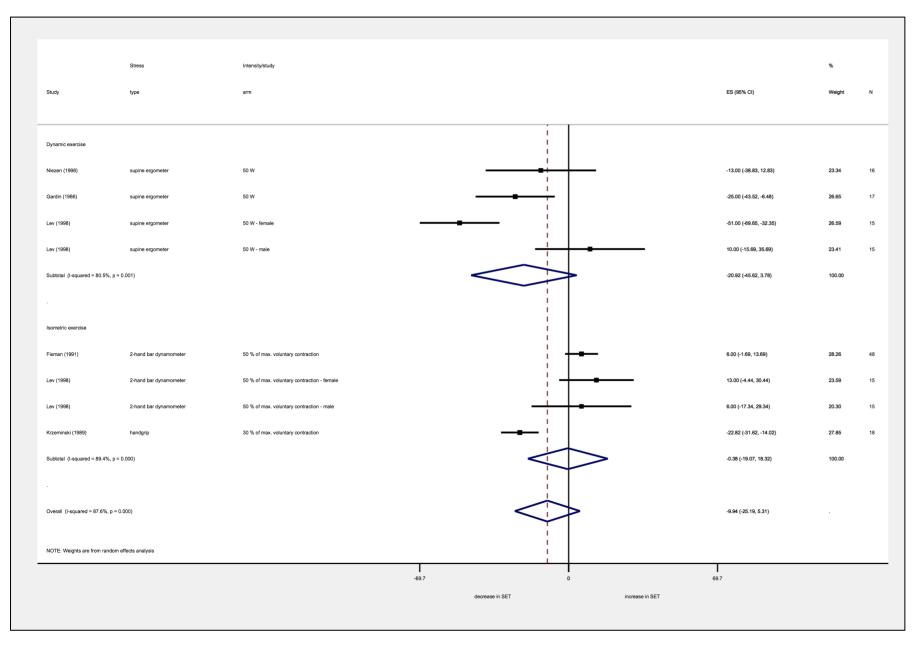


Figure S5. SET Changes [ms] in healthy subjects for light intensity stress.

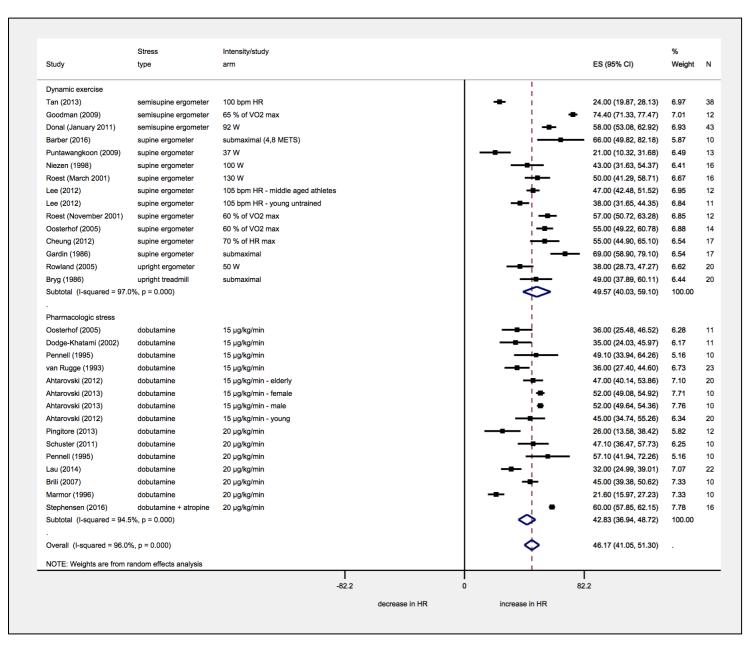


Figure S6. HR Changes [bpm] in healthy subjects for moderate intensity stress.

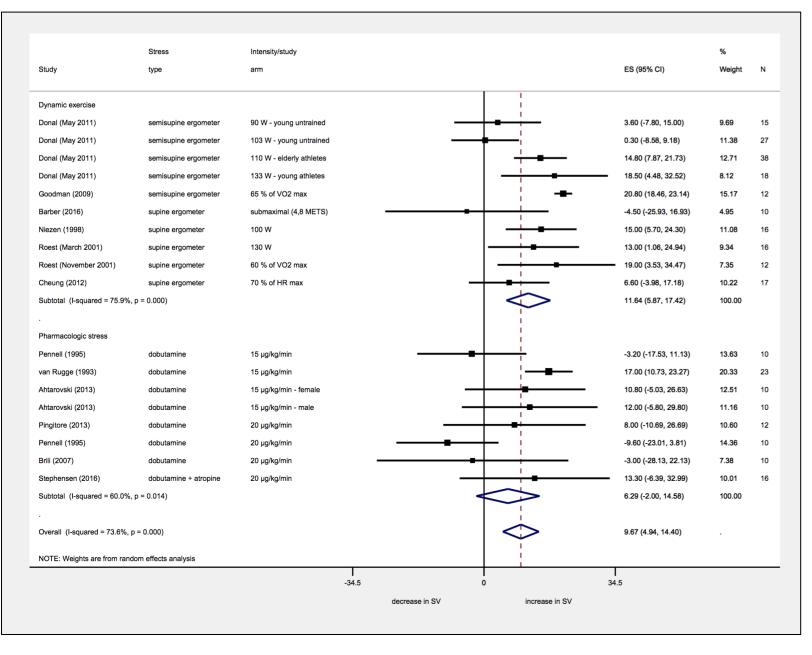


Figure S7. SV Changes [ml] in healthy subjects for moderate intensity stress.

Study	Stress type	Intensity/study arm			ES (95% CI)	% Weight	N
Dynamic exercise							
Donal (May 2011)	semisupine ergometer	90 W - young untrained			3.70 (2.65, 4.75)	8.59	1
Donal (May 2011)	semisupine ergometer	103 W - young untrained			3.90 (3.00, 4.80)	8.76	2
Donal (May 2011)	semisupine ergometer	110 W - elderly athletes			4.80 (4.10, 5.50)	8.95	3
Donal (May 2011)	semisupine ergometer	133 W - young athletes		· · · · ·	 7.60 (6.49, 8.71) 	8.53	1
Tan (2013)	semisupine ergometer	100 bpm HR			3.40 (2.51, 4.29)	8.77	3
Barber (2016)	supine ergometer	submaximal (4,8 METS)			3.45 (0.88, 6.02)	6.39	1
Puntawangkoon (2009)	supine ergometer	37 W			2.04 (1.77, 2.30)	9.20	1
Niezen (1998)	supine ergometer	100 W			4.24 (3.43, 5.05)	8.85	1
Roest (March 2001)	supine ergometer	130 W		_ 	6.00 (4.73, 7.27)	8.33	1
Roest (November 2001)	supine ergometer	60 % of VO2 max			— 7.80 (6.47, 9.13)	8.25	1
Cheung (2012)	supine ergometer	70 % of HR max			4.29 (2.86, 5.72)	8.11	1
Weber (2011)	supine ergometer	80 % increase in HR			4.98 (2.98, 6.98)	7.26	2
Subtotal (I-squared = 95.39					4.67 (3.50, 5.84)	100.00	-
	, p = 0.000)				4.07 (0.00, 0.04)	100.00	
Pharmacologic stress							
Pennell (1995)	dobutamine	15 μg/kg/min		_	4.30 (3.10, 5.50)	9.97	1
van Rugge (1993)	dobutamine	15 µg/kg/min		-¦æ	4.90 (4.25, 5.55)	12.00	2
Ahtarovski (2013)	dobutamine	15 μg/kg/min - female			5.94 (4.42, 7.46)	8.71	1
Ahtarovski (2013)	dobutamine	15 µg/kg/min - male		·	6.60 (5.06, 8.14)	8.64	1
Pingitore (2013)	dobutamine	20 µg/kg/min			2.00 (0.93, 3.07)	10.51	1
Pennell (1995)	dobutamine	20 µg/kg/min		_ + _	4.50 (3.56, 5.44)	11.01	1
Lau (2014)	dobutamine	20 µg/kg/min			4.80 (3.87, 5.73)	11.02	2
Brili (2007)	dobutamine	20 µg/kg/min		_	4.00 (1.64, 6.36)	5.91	1
Marmor (1996)	dobutamine	20 µg/kg/min		- - -	2.88 (2.03, 3.73)	11.32	1
Stephensen (2016)	dobutamine + atropine	20 µg/kg/min			4.75 (3.79, 5.71)	10.91	1
Subtotal (I-squared = 80.99	%, p = 0.000)			\diamond	4.42 (3.65, 5.19)	100.00	
Overall (I-squared = 93.5%	o, p = 0.000)			\diamond	4.57 (3.81, 5.32)		
NOTE: Weights are from ra	ndom effects analysis				_		
		-9.13	0		9.13		
		der	crease in CO	increase in CO			

Figure S8. CO Changes [l/min] in healthy subjects for moderate intensity stress.

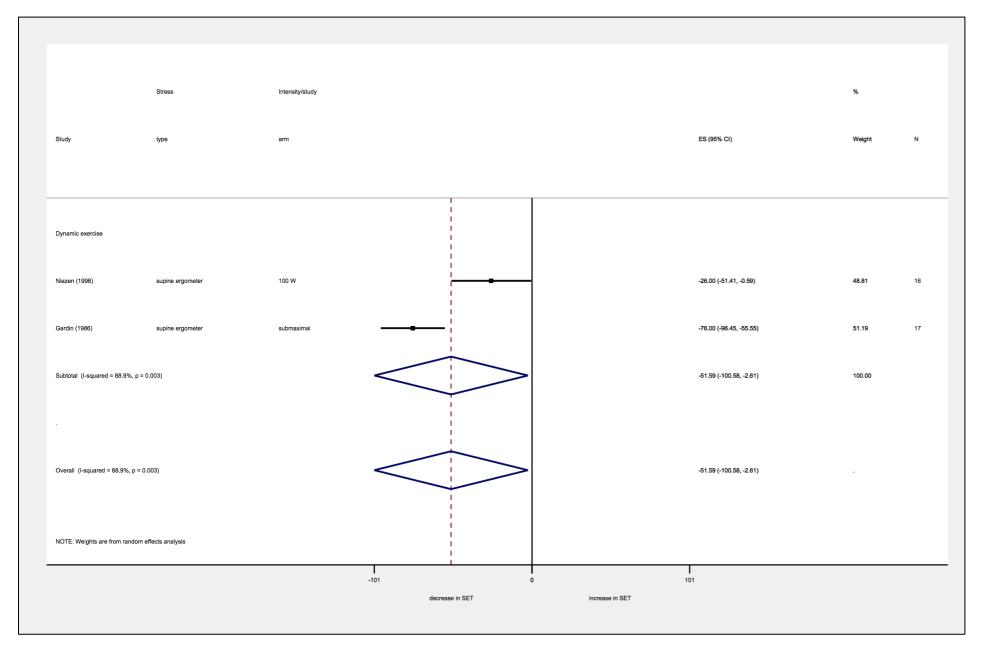


Figure S9. SET Changes [ms] in healthy subjects for moderate intensity stress.

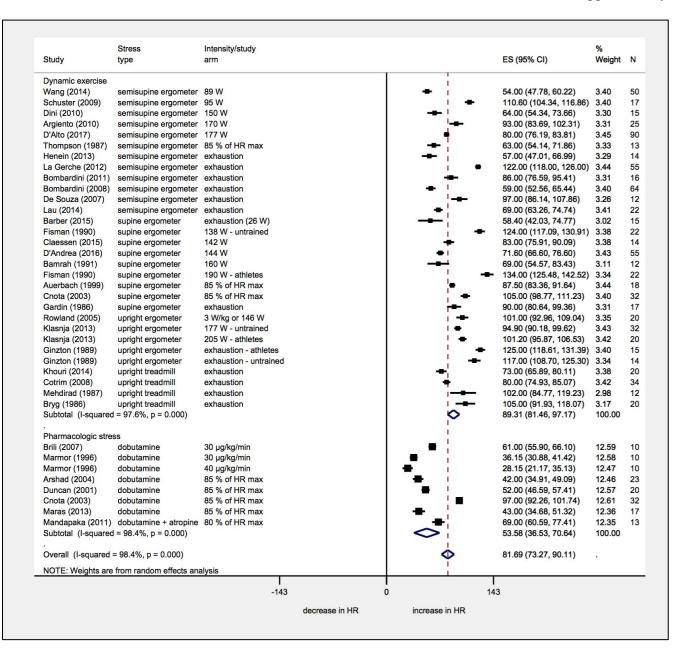


Figure S10. HR Changes [bpm] in healthy subjects for high intensity stress.

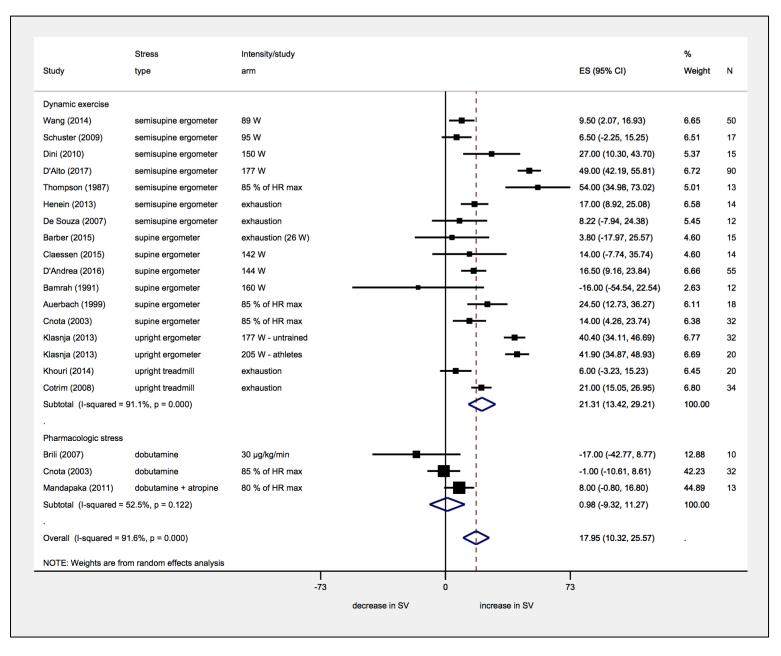


Figure S11. SV Changes [ml] in healthy subjects for high intensity stress.

Obudu	Stress	Intensity/study				%	
Study	type	arm			ES (95% CI)	Weight	N
Dynamic exercise							
Wang (2014)	semisupine ergometer	89 W		-	3.22 (2.48, 3.96)	5.71	5
Schuster (2009)	semisupine ergometer	95 W			7.31 (5.77, 8.85)	5.61	1
Dini (2010)	semisupine ergometer	150 W			7.60 (5.74, 9.46)	5.55	1
Argiento (2010)	semisupine ergometer	170 W			13.30 (11.57, 15.03)	5.58	2
D'Alto (2017)	semisupine ergometer	177 W			13.10 (12.19, 14.01)	5.70	9
Thompson (1987)	semisupine ergometer	85 % of HR max			12.42 (9.81, 15.03)	5.38	1
Henein (2013)	semisupine ergometer	exhaustion			6.10 (5.10, 7.10)	5.69	1
De Souza (2007)	semisupine ergometer	exhaustion		<u>+</u>	7.67 (5.43, 9.91)	5.47	1
Lau (2014)	semisupine ergometer	exhaustion			12.30 (10.59, 14.01)	5.58	2
Barber (2015)	supine ergometer	exhaustion (26 W)		_ '	6.80 (4.18, 9.42)	5.38	1
Claessen (2015)	supine ergometer	142 W			10.00 (6.94, 13.06)	5.26	1
Bamrah (1991)	supine ergometer	160 W			8.30 (4.50, 12.10)	5.02	1
Auerbach (1999)	supine ergometer	85 % of HR max		+ -	10.60 (9.00, 12.20)	5.60	1
Cnota (2003)	supine ergometer	85 % of HR max		+ - -	10.40 (9.00, 11.80)	5.63	3
Klasnja (2013)	upright ergometer	177 W - untrained		· · · · •	14.10 (13.16, 15.04)	5.69	3
Klasnja (2013)	upright ergometer	205 W - athletes		-	- 15.20 (14.09, 16.31)	5.67	2
Sagiv (2000)	upright ergometer	255 W - aerobic exercise			 19.00 (18.46, 19.54) 	5.73	2
Sagiv (2000)	upright ergometer	457 W - anaerobic exercise			10.10 (9.68, 10.52)	5.73	2
Subtotal (I-squared	d = 98.9%, p = 0.000)			\diamond	10.45 (8.04, 12.85)	100.00	
Pharmacologic stre							
Pharmacologic stre Brili (2007)	dobutamine	30 µg/kg/min			3.70 (1.34, 6.06)	20.71	1
Marmor (1996)	dobutamine	30 µg/kg/min		-	4.99 (3.91, 6.07)	26.55	1
Marmor (1996)	dobutamine	40 µg/kg/min			3.38 (2.00, 4.76)	25.33	1
Cnota (2003)	dobutamine	85 % of HR max		₽ ¦	7.40 (6.57, 8.23)	27.40	3
Subtotal (I-squared	d = 90.4%, p = 0.000)				4.98 (2.94, 7.01)	100.00	
Overall (I-squared	= 98.9%, p = 0.000)				9.43 (7.24, 11.61)		
NOTE: Weights are	from random effects analys	sis					
		 -19.5	i	0	 19.5		
			decrease in CO	increase in CO			

Figure S12. CO Changes [l/min] in healthy subjects for high intensity stress.

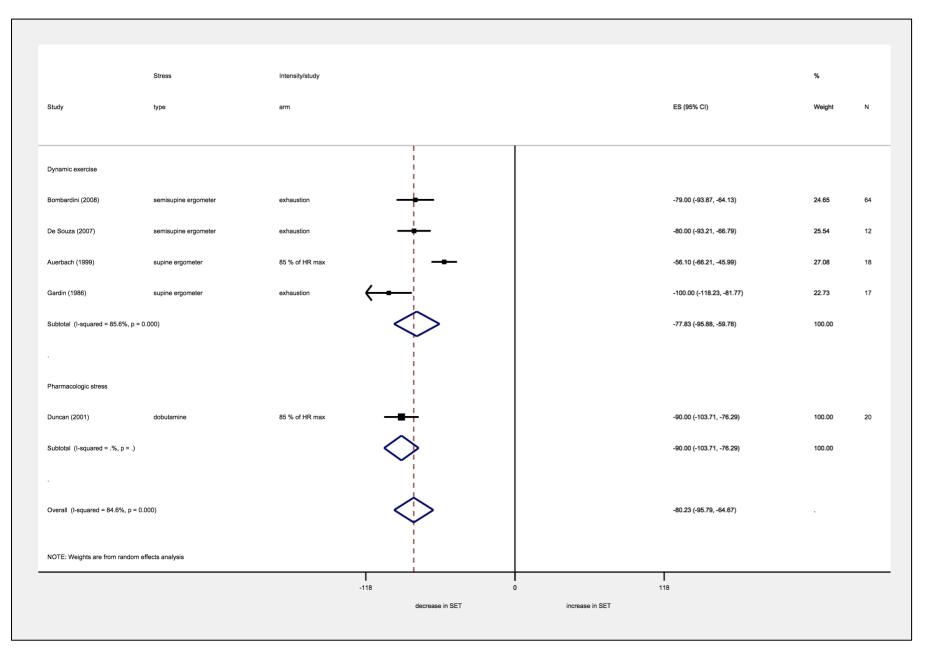



Figure S13. SET Changes [ms] in healthy subjects for high intensity stress.

Supplementary Material: Hemodynamic Changes during Stress Testing

Figure S14. HR Changes [bpm] in patients with aortic stenosis for moderate intensity stress.

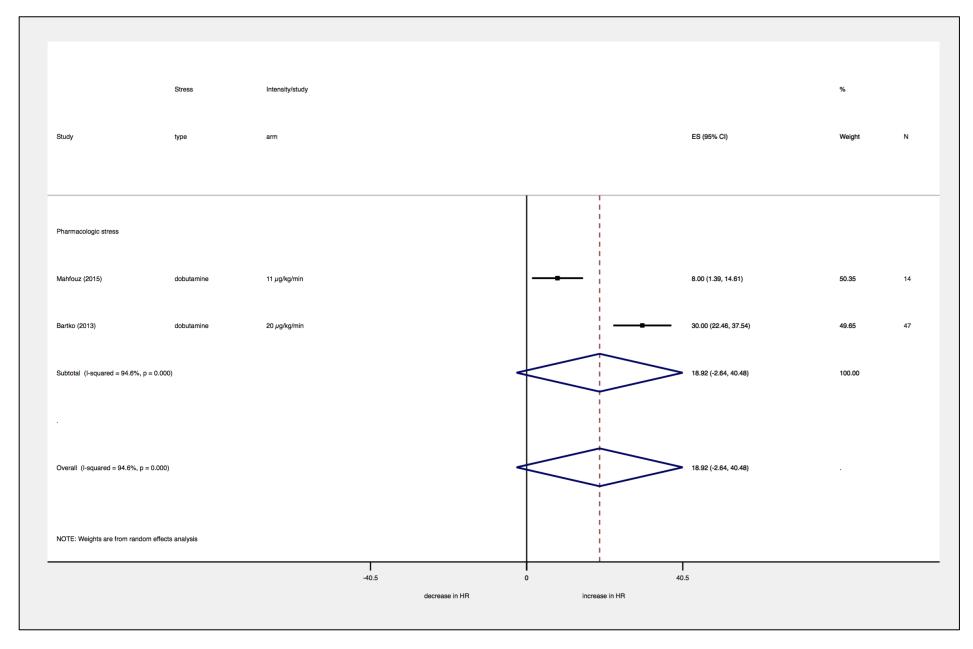


Figure S14 (a). HR Changes [bpm] in patients with low-flow, low-gradient aortic stenosis for moderate intensity stress.

Stress Intensity/study % ES (95% CI) type arm Weight N Donal (January 2011) 86 W - abnormal exercise test 44.00 (38.99, 49.01) 69 38.81 semisupine ergomete Donal (January 2011) 96 W - normal exercise test 48.00 (44.63, 51.37) 136 61.19 semisupine ergometer Subtotal (I-squared = 40.6%, p = 0.195) 46.45 (42.63, 50.27) 100.00 Pharmacologic stress 5-20 µg/kg/min 18.00 (0.47, 35.53) dobutamine 100.00 11 Subtotal (I-squared = .%, p = .) 18.00 (0.47, 35.53) 100.00

0

increase in HR

Figure S14 (b). HR Changes [bpm] in patients with aortic stenosis after excluding low-flow, low-gradient patients for moderate intensity stress.

decrease in HR

1 -51.4

Study

Dynamic exercise

Tardif (1997)

Overall (I-squared = 83.0%, p = 0.003)

NOTE: Weights are from random effects analysis

41.54 (32.82, 50.26)

51.4

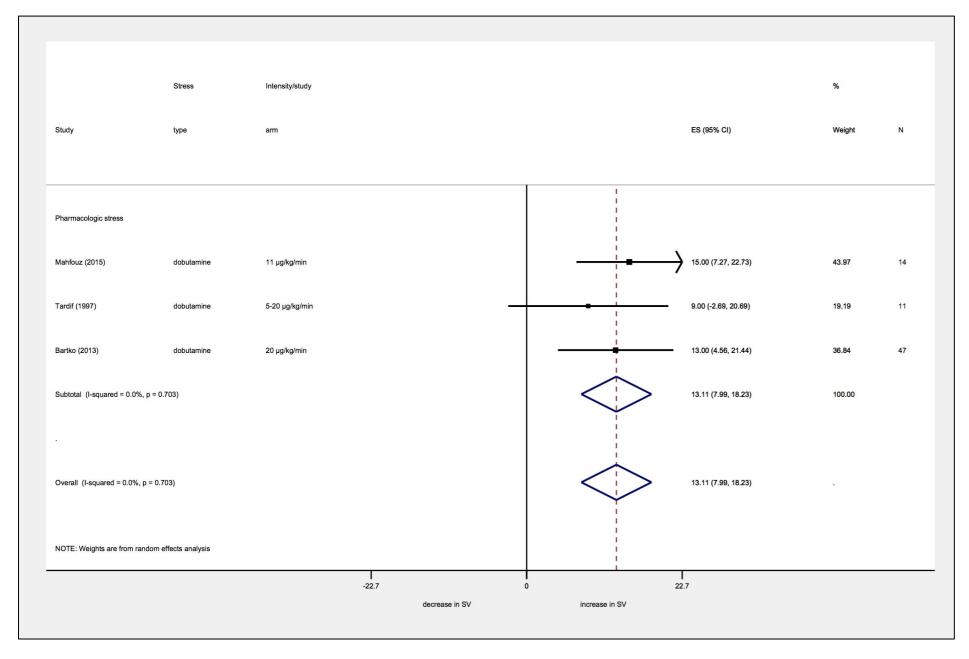


Figure S15. SV Changes [ml] in patients with aortic stenosis for moderate intensity stress.

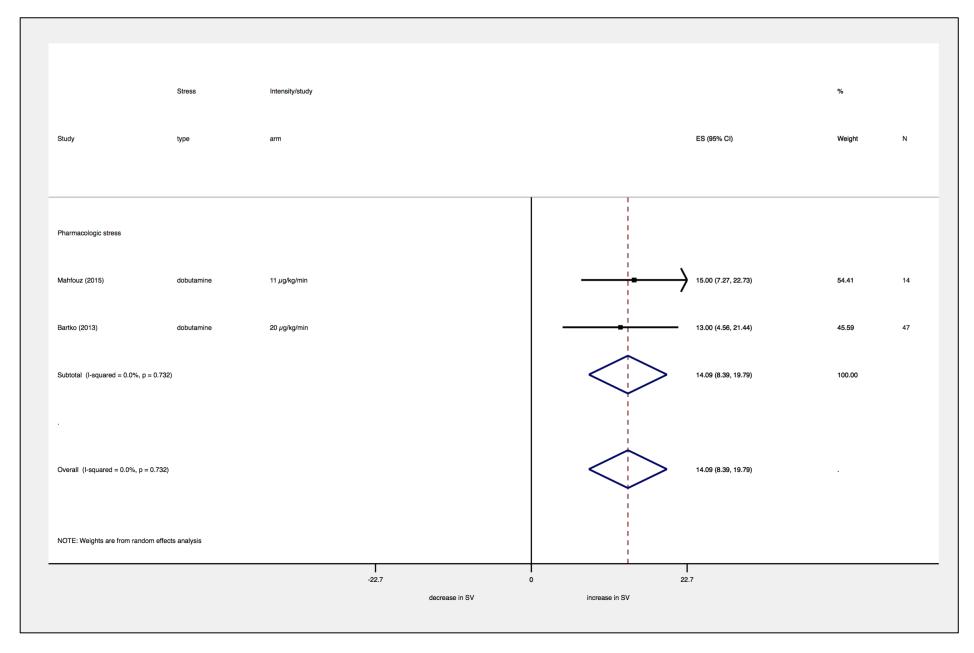


Figure S15 (a). SV Changes [ml] in patients with low-flow, low-gradient aortic stenosis for moderate intensity stress.

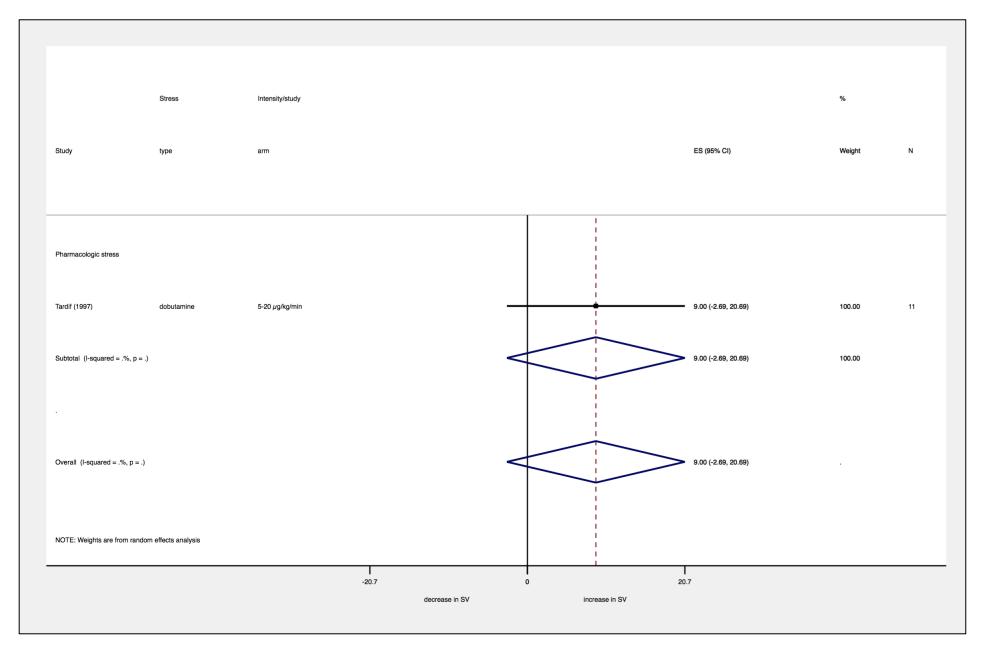


Figure S15 (b). SV Changes [ml] in patients with aortic stenosis after excluding low-flow, low-gradient patients for moderate intensity stress.

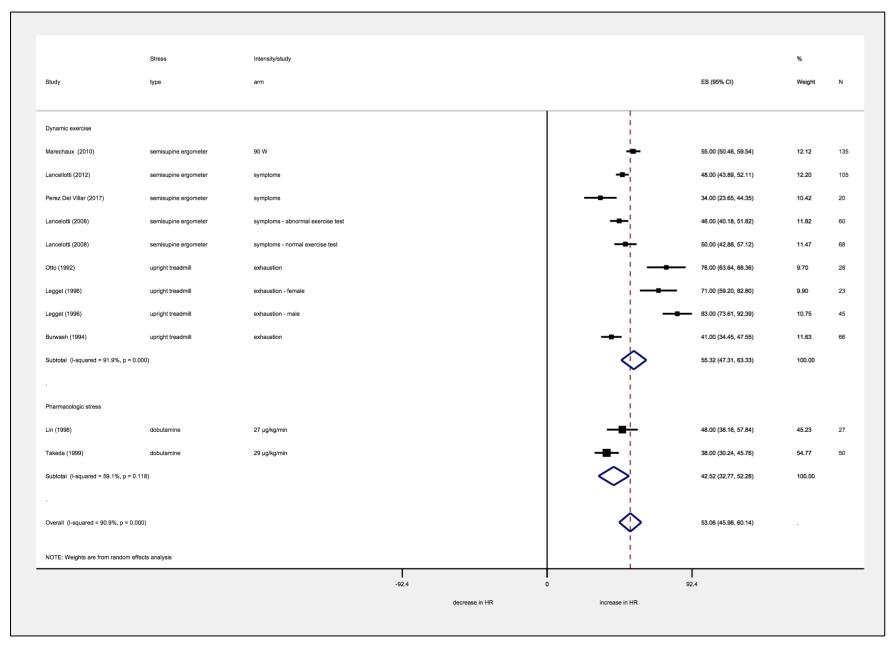


Figure S16. HR Changes [bpm] in patients with aortic stenosis for high intensity stress.

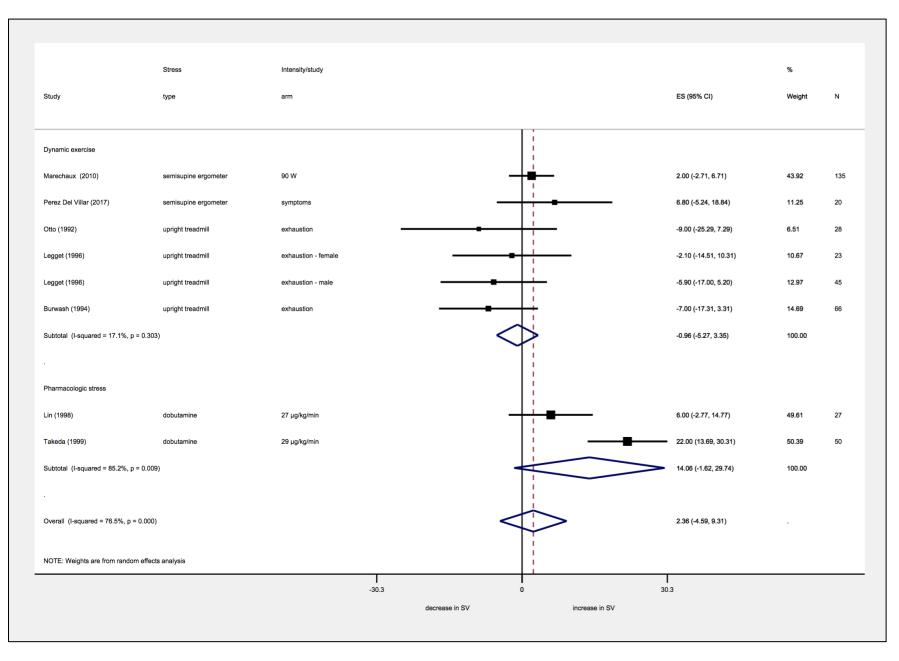


Figure S17. SV Changes [ml] in patients with aortic stenosis for high intensity stress.

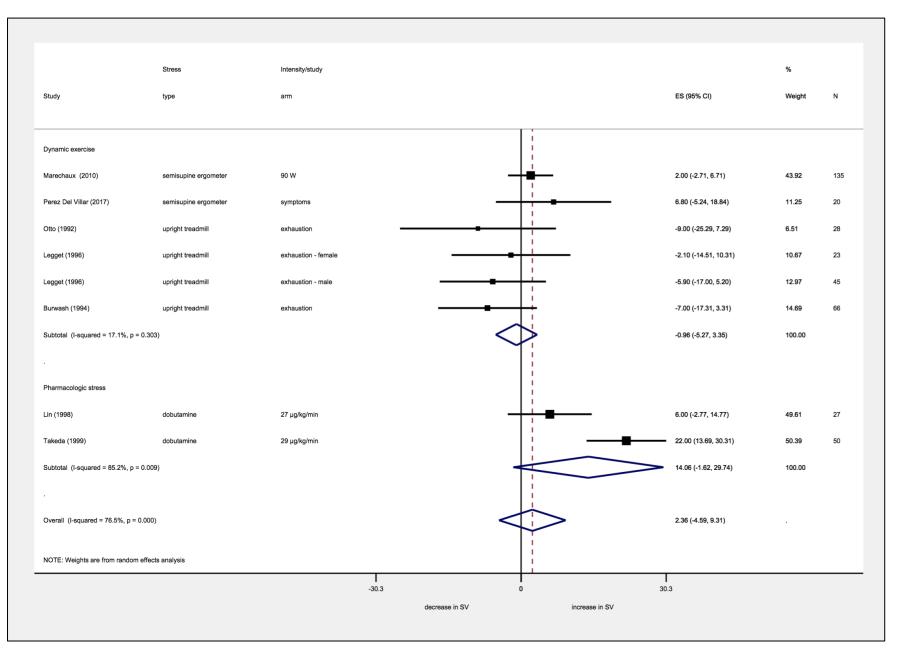


Figure S18. CO Changes [l/min] in patients with aortic stenosis for high intensity stress.

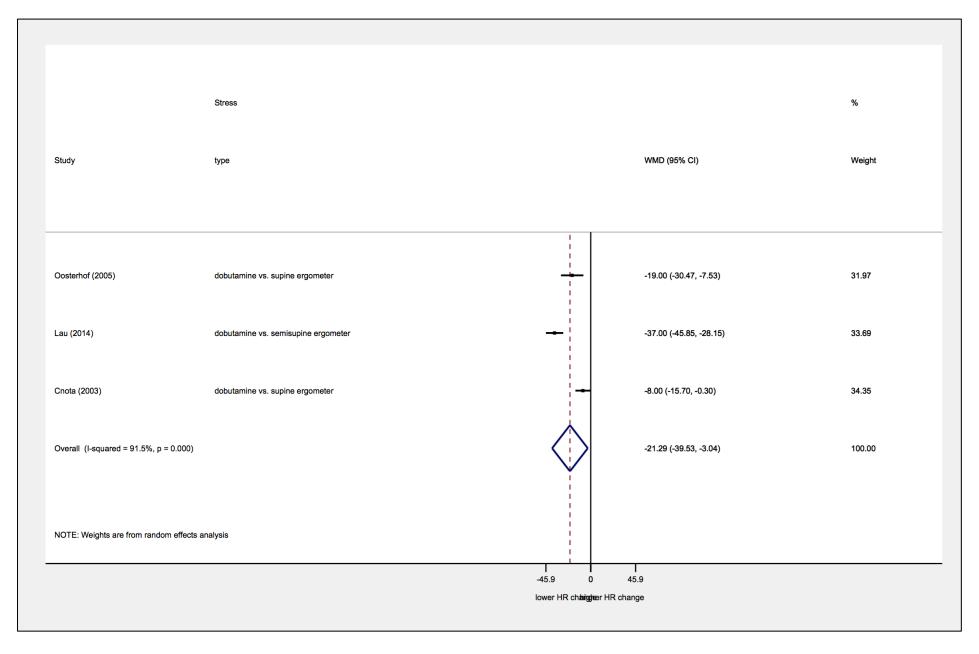


Figure S19. Differences in HR Changes [bpm] in healthy subjects for dobutamine vs. dynamic stress testing in directly comparative studies.

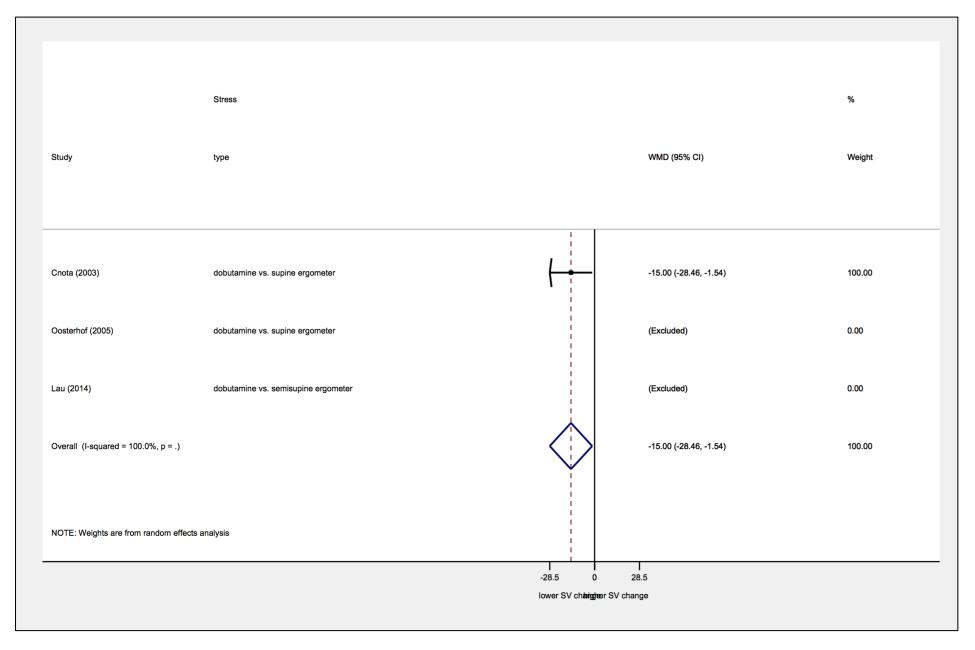


Figure S 20. Differences in SV Changes [ml] in healthy subjects for dobutamine vs. dynamic stress testing in directly comparative studies.

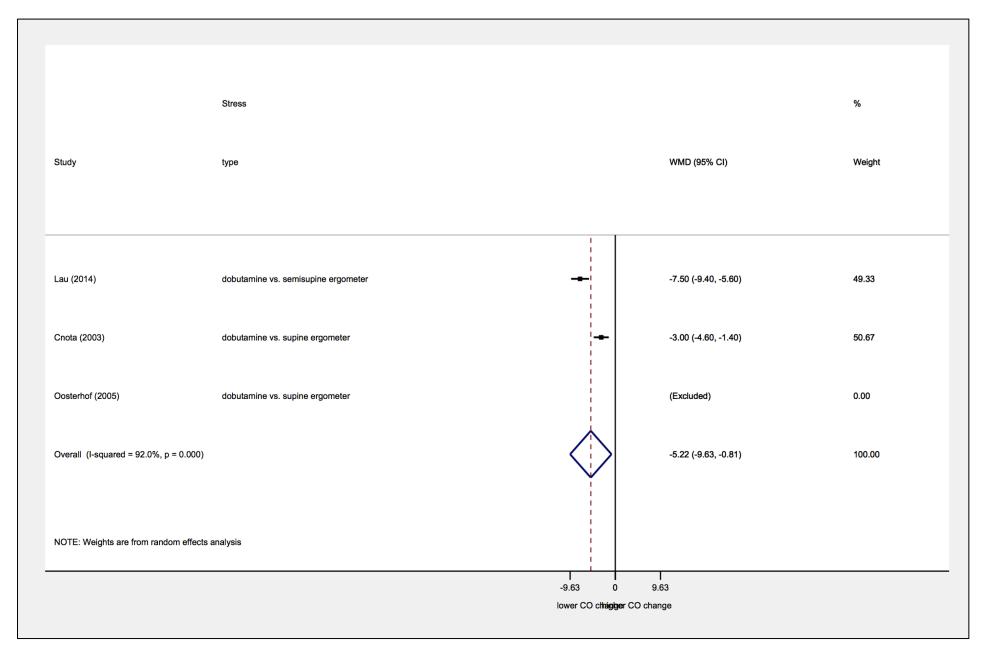


Figure S 21. Differences in CO Changes [l/min] in healthy subjects for dobutamine vs. dynamic stress testing in directly comparative studies.

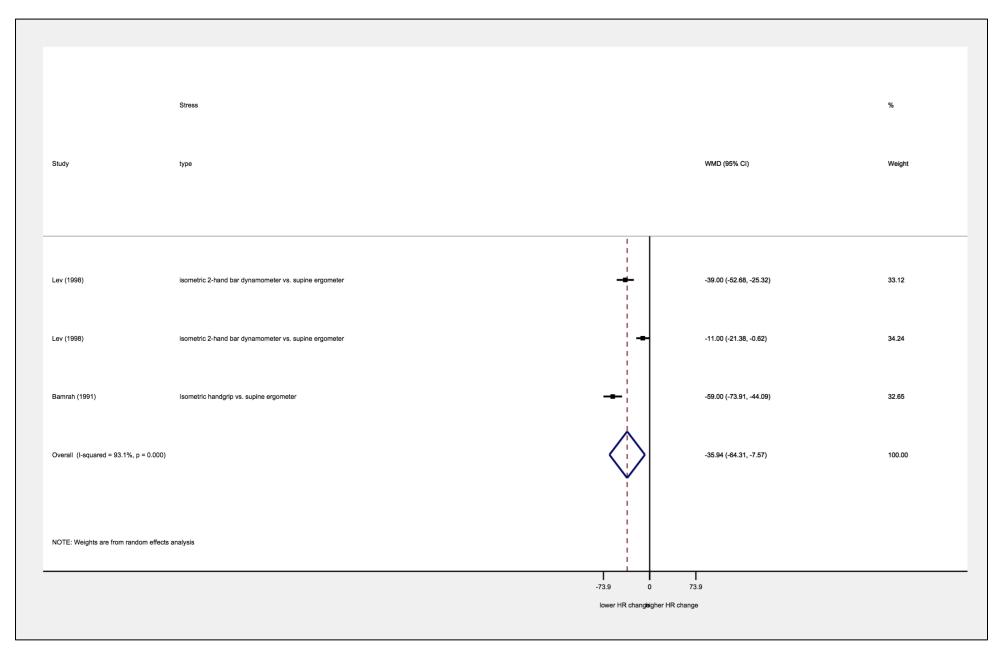


Figure S 22. Differences in HR Changes [bpm] in healthy subjects for isometric vs. dynamic stress testing in directly comparative studies.

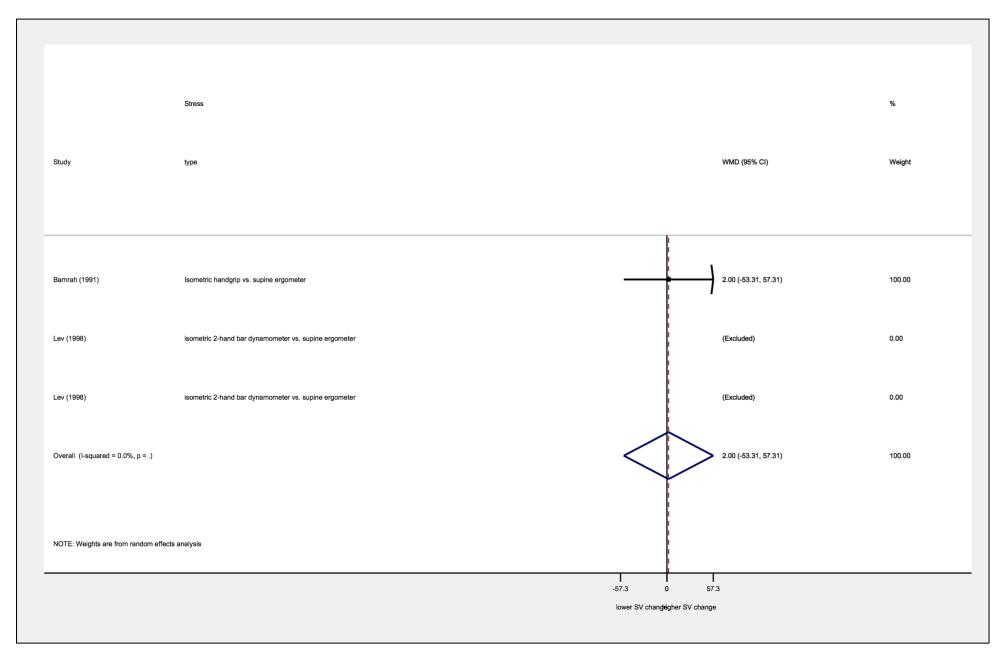


Figure S 23. Differences in SV Changes [ml] in healthy subjects for isometric vs. dynamic stress testing in directly comparative studies.

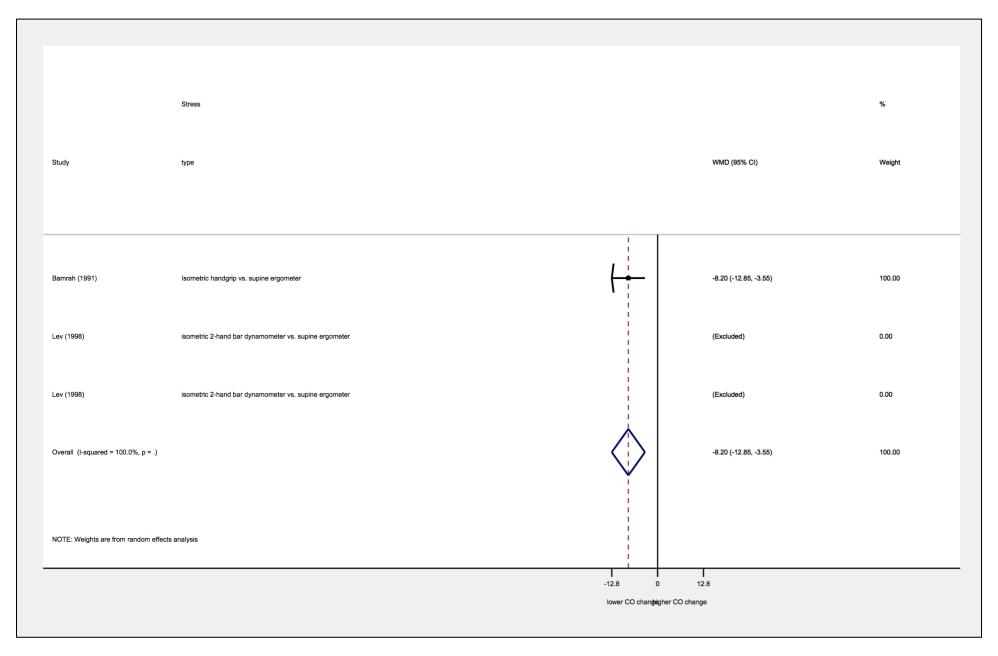


Figure S 24. Differences in CO Changes [l/min] in healthy subjects for isometric vs. dynamic stress testing in directly comparative studies.

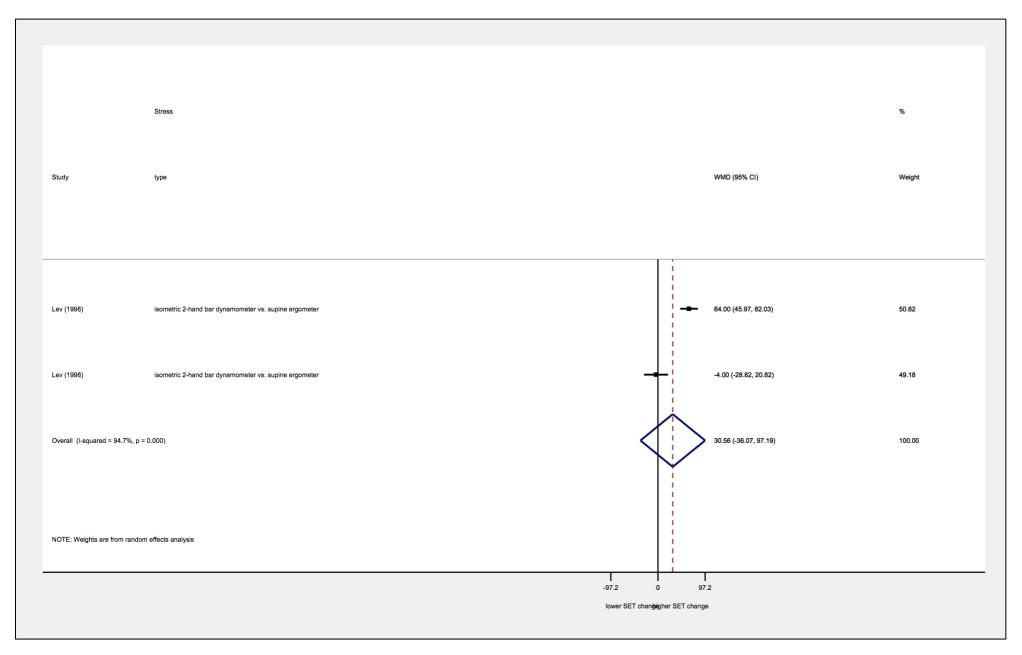


Figure S 25. Differences in SET Changes [ms] in healthy subjects for isometric vs. dynamic stress testing in directly comparative studies.