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Statistical methods 

Our aim was to estimate the parameters of a density-dependent Leslie matrix model: 

nt,r = (1 / (1 + kr Nt–1,r)) Ar nt–1,r, 

from data on size-abundance distributions, size-at-age, and binary recapture histories. Here, 

nt,r is a vector containing the abundances of each age class at time t in river r and Ar is a 

matrix of vital rates (survival probabilities and fecundity estimates) in river r. Nt,r is the total 

number of individuals in the population at time t in river r, and the parameter kr governs the 

strength of density dependence in river r, with values close to zero indicating no density 

dependence and positive values indicating negative density dependence. We used five age 

classes and eight size classes based on the following bins: (0 g, 200 g], (200 g, 500 g], (500 g, 

1000 g], (1000 g, 2000 g], (2000 g, 5000 g], (5000 g, 10000 g], (10000 g, 20000 g], and 

(20000 g, 60000 g]. These bins were chosen arbitrarily, with unequal bin widths to avoid the 

majority of individuals falling into one or a few size classes. 

We used time series of size-abundance distributions to estimate vital rates, using size-

at-age data to convert observed size-class abundances to ages, and using binary recapture 

histories to estimate the probability of detecting an individual in any given survey. We 

connected the population matrix model to the three data types with three component 

likelihoods: 

Size-abundance distributions (ℒabundance): yt,r ~ Poisson(p Ω nt,r); 

Capture histories (ℒcapture): zi ~ CJS(p, s); and 

Size-at-age (ℒsize-age): ui ~ Multinomial(vi, ωi). 

The first component likelihood assumes that abundances in all size classes at time t in river r 

(yt,r) are independently Poisson-distributed, conditional on unobserved initial abundances 

(n0,r) and the matrix population model outlined above (i.e., age classes are connected through 

the Leslie matrix, Ar). Observed abundances are reduced relative to true abundances due to 
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imperfect detection, with a size-independent detection probability p. Observed size-class 

abundances are converted to age-class abundances by the matrix Ω, which captures the 

probability that an individual in size class i belongs to age class j, for all i and j. The second 

component likelihood assumes that observed binary capture histories, zi, follow a Cormack-

Jolly-Seber model with time-varying survival probabilities, s, and constant detection 

probability, p (Lebreton et al. 1992). This use of capture histories allows estimation of the 

parameter p, used in the first component likelihood. The third component likelihood assumes 

that the distribution of individuals in size class i across all age classes follows a multinomial 

distribution with size vi and probabilities ωi. The size vi is the number of individuals in size 

class i, and the data ui is the observed distribution of individuals in size class i among all age 

classes. The probability vectors ωi formed the rows of the matrix Ω, which was used to 

convert modelled ages to size classes in the first component likelihood. 

This model structure requires priors on the Leslie matrices (Ar), the parameters p and 

s of the Cormack-Jolly-Seber model, the matrix Ω, age-class abundances at time 0 (n0,r), and 

the Beverton-Holt density-dependence parameter (kr). We used a mixture of vague and 

vaguely informative priors, drawing on past empirical studies to inform estimates of survival 

and size-age associations. We did not assess sensitivity to choice of priors because our aim 

was to illustrate the implementation of a simple integrated model rather than present a 

rigorous analysis of our data. 

Leslie matrices are sparse, with non-zero survival probabilities on the lower diagonal 

and on the diagonal in the final age class, which includes all individuals five years or older. 

We assigned inverse-logit transformed Gaussian priors to survival probabilities (hereafter, 

psurvival), with priors in each river sharing a common mean and standard deviation. We 

assumed that mean survival was an increasing function of age: 

logit(psurvival,r) ~ Normal(µsurvival, σsurvival); 
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µsurvival = αsurvival + βsurvival × age; σsurvival ~ HalfNormal(0, 0.5); 

αsurvival ~ Normal(0, 2); βsurvival ~ Normal(0, 2). 

Here, parameters in bold are vectors with five elements (one for each age class), and the 

subscript r denotes survival values in river r. The tilde is shorthand for “is distributed as”, 

and all Normal distributions are parameterised with means and standard deviations. A 

HalfNormal distribution is a Normal distribution truncated to non-negative values. 

We assumed that reproduction occurs from five years of age (Yen et al. 2013), so that 

the Leslie matrix included one non-zero element for reproduction (hereafter, noffspring). We 

assigned HalfNormal priors to reproduction in each river, with a mean and standard deviation 

shared among all rivers: 

noffspring,r ~ HalfNormal(µoffspring, σoffspring); 

µoffspring ~ HalfNormal(0, 3); σoffspring ~ HalfNormal(0, 3). 

All definitions follow those used for survival probabilities. 

We used half-Gaussian priors to model the (unobserved) initial age-class abundances 

(n0,r) in river r, with a common mean and standard deviation among all rivers: 

n0,r ~ HalfNormal(µ0, σ0); 

µ0 ~ HalfNormal(0, 50); σ0 ~ HalfNormal(0, 50). 

Here, parameters in bold are vectors with one element for each age class. All other definitions 

follow those used for survival probabilities. 

We used Dirichlet priors for the multinomial probabilities ωi in each size class i. 

These priors were designed to be informative given relatively few observations of fish with 

known age in larger size classes. Specifically, we set the Dirichlet concentration parameters 

for ωi to 80000 × exp(–αi2 / 2), where αi,j ={(10 / 7) × (1 – i) + 2j}. This prior favours age-

size associations that are relatively concentrated along the main diagonal of the age-size 

matrix Ω, so that larger fish are likely to be older than smaller fish. 
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Last, we assigned the survival probabilities (s) independent beta priors with both 

parameters equal to one and assigned the detection probability a beta prior with both 

parameters equal to 10. We set independent uniform priors on the density-dependence 

parameters in each river (kr), with lower bounds of 10–5 and upper bounds of 0.2. 

We assumed the three component likelihoods were independent, so that the composite 

likelihood was the product of all three component likelihoods: 

ℒcomposite = ℒgrowth × ℒabundance × ℒcapture. 

Given this composite likelihood, we used to greta R package to generate fully Bayesian 

parameter estimates (Golding 2018). We based parameter estimates on 40000 random-walk 

Metropolis-Hastings Monte Carlo iterations (four chains of 100000 iterations, retaining every 

tenth sample), following a 1900000 iteration warm-up and burn-in period.  This model took 

approximately 4 hours to run on a MacBook Pro with 2.5 GHz Intel Core i7 processor and 16 

GB of RAM. 

We assessed model convergence through visual inspection of chains and used 

Bayesian r2 values to summarise model fit (Gabry & Goodrich 2018). Bayesian r2 values 

extend the classical definition of r2 (variance of predicted values divided by variance of the 

data) by replacing the denominator with the variance of predicted values plus the variance of 

the errors, which avoids situations in which the numerator exceeds the denominator (Gabry & 

Goodrich 2018). We did not use more-rigorous model validation (e.g., cross validation) 

because our goal was to illustrate the implementation of a simple integrated model rather than 

to present a full analysis of these data. Links to model code are in the Data availability 

section in the main text. 
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Table S1. Bayesian r2 values between fitted and observed abundances. Bayesian r2 values 
extend the classical definition of r2 (variance of predicted values divided by variance of the 
data) by replacing the denominator with the variance of predicted values plus the variance of 
the errors, which avoids situations in which the numerator exceeds the denominator. 

River system Broken Campaspe Goulburn Ovens Murray Loddon 
Mean 0.48 0.46 0.38 0.38 0.02 0.42 
Median 0.52 0.51 0.48 0.43 0.00 0.52 
10% quantile 0.41 0.27 0.10 0.09 0.00 0.09 
90% quantile 0.52 0.52 0.51 0.53 0.04 0.52 
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Table S2. Posterior mean, median, and 80 % credible intervals for the density dependence 
parameter k in each river system. Density dependence was modelled with a Beverton-Holt 
function with constant parameter k for all elements of the transition matrix. Values of k near 
zero indicate no apparent density dependence and values of k greater than zero indicate 
negative density dependence. The prior distribution of k did not allow negative values, so that 
positive density dependence was not included in fitted models. The effects of estimated k 
values on vital rates at different abundances are shown in Figure S2 (below). 

River system Broken Campaspe Goulburn Ovens Murray Loddon 
Mean 0.00048 0.00187 0.00044 0.00032 0.00005 0.00862 
Median 0.00005 0.00113 0.00001 0.00008 0.00002 0.00160 
10% quantile 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 
90% quantile 0.00029 0.00459 0.00118 0.00036 0.00009 0.02951 
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Figure S1. Observed abundances (grey) of Murray cod in each of six river systems plotted 
against estimated abundances from an integrated model (orange). Solid lines are means and 
shaded regions denote 2.5th and 97.5th quantiles. 
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Figure S2. Fitted density dependence scaling factors for Murray cod in six river systems in 
south-eastern Australia. Scaling factors are the proportional reduction in all vital rates for a 
given abundance. 
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