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SUPPLEMENTARY INFORMATION

Second Moment Calculation with Super Gaussian
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Brackets are defined to be shorthand for the normalized
expression,
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Consider a parameter that can be written as an expan-
sion of the form
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With these definitions, the second moment of the param-
eter X(x) is then given by
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Both (3) and (5) are useful for computing several terms.
For instance, the rms length σz of the super-Gaussian
electron beam is found directly from (3) for n = 2, with
the direct substitution α = q2/σ4

z where,
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Similarly, the transform-limited bunching bandwidth σkE
can be found by combining expressions and setting α =
2q2(1/σ4
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The rms width of the bunching envelope is,
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Comparing the series expansion for the phase
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with X above, we see that to calculate σ2
ϕ′ in the main

text we identify cN = φN/Γ(N) to obtain
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Note that 3q = 1.013 . . . , so for small N this term can
be neglected.

If the phase is described by only a single term in the
polynomial expansion, i.e.,
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then the excess bandwidth is given by
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where GN = GN,N ,
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The first few numerical values are given in the table in
the main text.

The total bandwidth is then
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Optimum Laser and Electron Beam for Minimum
Bandwidth

The minimum total bandwidth is given when the
transform-limited bandwidth satisfies,(
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If the electron beam has a fixed-length and the
transform-limited laser pulse length is varied, the opti-
mal laser pulse that minimizes the bandwidth is given
by
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Clearly, physical solutions exist only for sufficiently large
amplitudes of the nonlinear coefficient,
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otherwise, the smallest obtainable bunching bandwidth

is the σL →∞ limit.

Alternatively, if the laser is held fixed and the electron
beam length is adjusted, the optimal length is
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Again, physical solutions only exist if,

φ2NGN (N − 1) > σ2N
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Otherwise, the smallest obtainable bunching bandwidth
is the σz →∞ limit.


