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ABSTRACT

This is a Supplemental Datasheet with the explicit formulation of Model A and Model B
considered in the main text. A Matlab implementation of both models including their derivati-
ves and inverse is available at http://isp.uv.es/docs/BioMultiLayer_L_NL_a_and_b.zip. This
code also includes numerical checks of the analytical results presented here.

1 FORMULATION OF MODELS

As stated in the Material and Methods section of the main text, Model A and Model B consist of a
cascade of linear + nonlinear layers and these models only differ in the nonlinear part of the layer based
on wavelet transform, which should account for the frequency and the orientation masking.

In this formulation we follow the two suggestions made in (Martinez-Garcia et al., 2018): (a) we
provide not only the forward transform, but also all the Jacobians and the inverse; and (b) we use matrix
notation. We simply list the results for the Jacobian and the inverse with no proof, just for the reader
convenience. However, in the provided toolbox, BioMultiLayer_L_NL_a_and_b.zip, there is a routine
that numerically checks the Jacobian and compares the inverse to the actual input.

2 FORWARD TRANSFORM

Here, in each layer we use convolutional filters for the linear part, L, and the canonical Divisive Norma-
lization for the nonlinear part, N . The forward transforms performed by each specific layer are described
below:

Layer 1: Brightness from Radiance

L(1) ≡ y1 = L1 · x0

N (1) ≡ x1 = K(y1) ·D−1(
b1+H1·y1γ

1) · y1γ1

(1)
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where, L1 is a matrix with the color matching functions for each spatial location. In particular, restricting
ourselves to achromatic information, the only required color matching function would be the spectral
sensitivity Vλ (Wyszecki and Stiles, 1982; Fairchild, 2013), leading to the luminance in each spatial
location. The nonlinear part is the canonical Divisive Normalization, where the Hadamard products and
quotients have been expressed using diagonal matrices: note that a � b = Da · b = Db · a and Dv is
a diagonal matrix with the vector v in the diagonal (Martinez-Garcia et al., 2018; Minka, 2001). The

global scaling matrix K(y1) = κ

(
Db1 +D(

β
d1·y1γ

1) + I

)
, just ensures that the maximum brightness

value (for normalized luminance equal to 1) is κ. The role of the interaction kernel in the denominator
H1 =

(
β
d1+ I

)
, where 1 is the all-ones d × d matrix, and I is the identity matrix, is setting the anchor

for the brightness adaptation. With this kernel in the denominator the anchor luminance is related to

the average luminance energy
(
b1 + β

d1 · y
1γ

1
)

. The effect of this nonlinear transform is a Weber-like

adaptive saturation (Abrams et al., 2007). Similar nonlinear behavior can be assumed for the opponent
chromatic channels (Fairchild, 2013; Stockman and Brainard, 2010; Laparra et al., 2012), but we
didnt implemented the color version of the model.

Layer 2: Contrast from Brightness

L(2) ≡ y2 = L2 · x1

N (2) ≡ x2 = D−1
(b2+H2·y2)

· y2 (2)

where the linear stage computes the deviation of point-wise brightness with regard to the local brigh-
tness through L2 = I − Hn, and this kernel in the numerator, Hn, represents the convolution by a
two-dimensional Gaussian. The normalization through H2 = Hd · (I −Hn)−1, where the kernel in the
denominator,Hd, is another two-dimensional Gaussian kernel, leads to the standard definition of contrast:
normalization of the deviation of brightness by the local brightness.

Layer 3: Contrast sensitivity and spatial masking

L(3) ≡ y3 = L3 · x2

N (3) ≡ x3 = Dsign(y3) ·D−1(
b3+H3·|y3|γ3

) · |y3|γ3

(3)

where L3 is the convolution matrix equivalent to the application of a Contrast Sensitivity Function (CSF)
(Campbell and Robson, 1968). The rows of this matrix consist of displaced versions of center-surround
(LGN-like) receptive fields (impulse response of the CSF Martinez-Uriegas (1997)). The kernel in the
denominator, H3, represents the convolution by another two-dimensional Gaussian that computes the
local contrast energy that masks the responses in high-energy environments.

Layer 4: Wavelet analysis and frequency masking

L(4) ≡ y4 = L4 · x3

N (4) ≡ x4 = Dsign(y4) ·D−1(
b4+H4·|y4|γ4

) · |y4|γ4

(4)

where L4 is the matrix of Gabor-like receptive fields corresponding to V1-like sensors (Simoncelli and
Adelson, 1990). The kernel in the denominator, H4, represents the masking interaction between sensors
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tuned to different space, frequency and orientation (Watson and Solomon, 1997). The focus of this paper
is in the effect of training this 4th stage in large-scale naturalistic databases.

In Model A the kernel of the Divisive Normalization is restricted to intra-band submatrices. Model B
consists of (a) adding a global scaling factor (diagonal matrix) to set the dynamic range of the output, and
(b) generalizing the interaction kernel,

NB(e) = K(e?) · NA(e) = K(e?) ·Dsign(y) ·D−1(b+HG·e)
· e (5)

where

K(e?) = Dκ ·D(b+HG·e?) ·D
−1
e?

HG = Dc ·
[
Hp �Hf �Hφ � Cint

]
·Dw

where the global scaling vector, κ (that determines the dynamic range of the output) is obtained from
the intra-subband average of the response to natural images, |x|, in Model A, and the reference vector,
e? (that describes the dynamic range of the input to NB) may be independent of the input, e.g., a global
normalization constant vector, or, it may depend on each specific input. In the first case the fixed norma-
lization may be obtained from the intra-subband average of natural images in |y|γ . In the second case,
similarly to Layer 1, dependence with the input can be seen as auto-normalization as opposed to fixed
normalization. In the auto-normalization case, the dynamic range of the input may be set from the average
value in each subband (as in Layer 1, where the anchor luminance depends on the average luminance).
The averages over the subbands can be computed as e? = D 1

dw
· 1w · e. Where 1w is a block-diagonal

matrix with all-ones in the diagonal blocks corresponding to each subband and D 1
dw

is a diagonal matrix
that divides the corresponding sum by the dimension of the wavelet subband, thus leading to the average.
This apparently complicated matrix expression for the average is just to simplify the derivative with regard
to the stimulus, which reduces to the constant matrix D 1

dw
· 1w.

The generalized interaction kernel is given by the modulation (Hadamard, element-wise product) of
three Gaussian kernels over the locations, p, scales f , and orientations φ of the wavelet-like coefficients.
These Gaussian kernels have normalization constants so that they have unit volume in their definition
domain. In the case of spatial kernels, as the number of sensors per subband depends on the subband, the
amplitude of the Gaussian kernel also depends on the subband. Given the already nonlinear nature of the
input e, this difference in the normalization factor may mean that some subbands are over-weighted with
regard to others. That is why we included other matrices (the full matrix Cint and the diagonal matrixDw)
to compensate these effects if necessary. Note that Dw applies column-wise weights on the final kernel,
or equivalently, it selectively weights the energy of the subbands in the input vector e. This means that it
can be used to moderate the effect of the a specific subband if it is too big. More importantly, one could
act on a specific block of the full matrix, Cint, if the relation between two specific subbands should be
modified. We did not have to do that in this work for a qualitative fix of the behavior, i.e., Cint remained an
all-ones matrix. Finally, the global normalization of each row is controlled by the vector in the diagonal
matrix Dc.

3 JACOBIAN MATRIX WITH REGARD TO THE STIMULUS

In feed-forward networks the Jacobian ∇x0S(x0) reduces to the knowledge of the Jacobian of each
stage, ∇yiN (i)(yi) (Martinez-Garcia et al., 2018). In this work in the modified Model B, the only
term yet to be specified after the results in (Martinez-Garcia et al., 2018) is, ∇yNB(y). If we call
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xA = NA(y, HG) = Dsign(y) ·D−1(b+HG·e)
· e, we have:

∇yNB = K(e?) · ∇yNA(y) +DxA · ∇yK(e?) (6)

where

∇yNA(y) = Dsign(y) ·D−1(b+HG·e)
·
[
I −D(

e
b+HG·e

) ·HG

]
·Dγ|y|γ−1 ·Dsign(y)

∇yK(e?) = ∇eK(e?) ·Dγ|y|γ−1 ·Dsign(y)

∇eK(e?) =


0 in case e? is constant

Dκ ·
(
D−1e? ·HG −D(b+HG·e?) ·D

−2
e?
)
·D 1

dw
· 1w for auto-normalization

4 JACOBIAN MATRICES WITH REGARD TO THE PARAMETERS

The set of parameters of the modified nonlinearity of the 4-th layer is θ = {κ, b, γ,σp,σf ,σφ, c,w}. In
this set, κ is vector of weights that determines the scale of the different subbands of the response. The
vector, b, is the set of semisaturations (one per sensor). The exponent γ determines the strength of the
excitation/inhibition. The vector σp contains the widths of the spatial interaction kernels in Hp affecting
each sensor. Similarly, the vector σf contains the widths of the frequency interaction kernels in Hf , and
the vector σφ contains the widths of the angular interaction kernels in Hφ. The vector c describes the
amplitudes of the interaction kernels for the sensors (that goes in the diagonal matrix Dc) in Eq. 6 in
the main text. And finally, the vector w determines the specific weight of each linear coefficient in the
masking.

The list of Jacobian matrices is the following:

∇κNB = D(
sign(y)� b+HG·e?

e?
� e
b+HG·e

) (7)

∇bNB = Dsign(y) · κ ·D−1e? ·De ·
[
D−1

(b+HG·e)
−D(b+HG·e?) ·D

−2
(b+HG·e)

]
(8)

∇γ NB =



Dsign(y) ·K(e?) ·D−1D(e) ·
[
Dlog(|y|) −D−1D(e) ·DHG·De·log(|y|)

]
· e

in case e? is constant

Dsign(y) · (A+B) · e
in case of auto-normalization, where:
A = K(e?) ·D−1D(e) ·

[
Dlog(|y|) −D−1D(e) ·DHG·De·log(|y|)

]
B = Dκ ·D−1e? ·

D(
HG·D 1

dw
·1w·De·log(|y|)

) −DD(e?) ·D−1e? ·D(
D 1
dw
·1w·De·log(|y|)

)
 ·D−1D(e)

(9)
where D(e) stands for the denominator b+HG · e.
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In the derivatives with regard to the parameters that control the generalized kernel HG there are two
separate cases: (a) parameters that model the rows of the kernel, and (b) parameters that model the columns
of the kernel. The first case includes the widths of the Gaussian kernels in the rows of Hp, Hf and Hφ;
and the amplitude of each row (the scaling matrixDc). The second case refers to the weights in the matrix
Dw that affect each column of the kernel.

In the first case, the Jacobian with regard to parameters of the rows is:

∇θNB = D(
sign(y)� e

D(e)

)·
D( κe? ) ·diag


 e?>

...
e?>

·(∂HG

∂θ

)>−D−1D(e) ·K(e?)·diag

 e>
...
e>

·(∂HG

∂θ

)>


(10)
where, for each specific parameter, {σp,σf ,σφ, c}, we have:

∂HG

∂σp
= Dc ·

(
Hf�Hφ�Cint�

∂Hp
∂σp

)
·Dw where

(
∂Hp
∂σp

)
ij

=
dp1dp2
σpi

5 ns 2π

(
∆2
ij − 2σpi

2
)
e
−

∆2
ij

2 σpi
2

where dp1dp2 is the area (in deg2) of the discrete sampling cell for the sensors of the same scale as the
i-th sensor; ns is the number of subbands in the wavelet pyramid; and the departure ∆2

ij is the 2-norm of
the spatial distance between the i-th and the j-th sensors, |pi − pj |2.

∂HG

∂σf
= Dc ·

(
Hp�Hφ�Cint�

∂Hf

∂σf

)
·Dw where

(
∂Hf

∂σf

)
ij

=
1

σfi
4
√

2π

(
∆f2ij − σfi

2
)
e
−

∆f2
ij

2 σfi
2

where the departure in frequency between the i-th and j-th sensors, ∆fij , is measured in octaves.

∂HG

∂σφ
= Dc ·

(
Hp�Hf�Cint�

∂Hφ

∂σφ

)
·Dw where

(
∂Hφ

∂σφ

)
ij

=
dφ

σφi
4
√

2π

(
∆φ2ij − σφi

2
)
e
−

∆φ2
ij

2 σφi
2

where dφ is the angular separation between different orientations in the wavelet pyramid and it is measured
in the same units as the angular departure between sensors, ∆φij .

∂HG

∂c
=
(
Hp�Hf�Hφ�Cint

)
·Dw

In the second case, the Jacobian with regard to parameters of the columns is:

∇wNB = D(
sign(y)� e

D(e)

) ·
(
D( κe? ) ·

(
∂HG

∂w

)
·De −D−1D(e) ·K(e?)·

(
∂HG

∂w

)
·De?

)
(11)

where, ∂HG∂w = Dc ·
(
Hp�Hf�Hφ�Cint

)
.

5 INVERSE

If the reference vector, e?, is constant, the inverse has closed form:

y = N−1B (K(e?)−1 · |x| ) = Dsign(x) ·
[(
I −D(K(e?)−1·|x|) ·HG

)−1
·Db ·K(e?)−1 · |x|

] 1
γ

(12)

On the contrary, in the case of auto-adaptation, when coming back from certain x, the reference e? is
unknown. Nevertheless, the inverse can still be obtained iteratively. Starting from certain guess e?0 (e.g.,
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the one for natural images), one can obtain a first guess for the inverse y1 using Eq. 12. From the n-th
guess for the inverse, one can derive a new guess for the reference: e?n = D 1

dw
· 1w · |yn|γ , and keep the

iteration:
yn+1 = N−1B (K(e?n)−1 · x) (13)

where N−1B is computed using Eq. 12.
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