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Appendix A: Eshelby tensor (S) for an ellipsoidal shape inclusion in elastostatics for an 

isotropic medium 

For an ellipsoidal inclusion with a symmetric axis (𝑥1) in an isotropic matrix, the Eshelby 

tensor can be expressed as shown below, 
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where 𝜌 is the aspect ratio of the filler (𝑎1/𝑎2 = 𝑎1/𝑎3) and ν0 is the Poisson ratio of the 

matrix. Other components can be obtained using the minor symmetry condition 

(𝑆𝑖𝑗𝑘𝑙 = 𝑆𝑗𝑖𝑘𝑙 = 𝑆𝑖𝑗𝑙𝑘). Here, 𝑔 is given by  
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Appendix B: Effective inclusion method 

 In the effective inclusion method, a displacement jump due to interfacial damage is 

modeled by the reduced elastic modulus of the inclusion in the perfect bonding case. If this 

method is adapted, it becomes unnecessary to consider the modified Eshelby tensor or modified 

strain concentration tensor because interfacial damage is already considered by reducing the 

elastic modulus of the inclusion. 

 In the presence of an interfacial spring, the volume-averaged stress(�̅�) and strain(�̅�) 

of the composite are expressed using the volume-averaged stress (strain) within the matrix 

𝝈𝟎(𝜺𝟎) and particles 𝝈𝟏(𝜺𝟏), as in Eq. (C1)  
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(C1) 

Here, 𝑉1 and 𝑆1 are the total volume and surface of the particles in a composite, respectively. 

Under the assumption that local stress at the interface is uniform according to the mean stress 

of the inclusion, by replacing 𝜟𝒖 by Eq. (35), Eq. (C1) is reduced and can be expressed by 

Eq. (C2), 
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The term (𝑰 + 𝑯: 𝑳𝟏): 𝑳𝟏
−1 denotes the compliance of the effective inclusion. When 

the inclusion is spherical with the replacement of 𝜼 by Eq. (34), the reduced bulk and shear 

modulus (𝐾1
𝑅 , 𝜇1

𝑅) of the inclusion are obtained as shown below. 
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After predicting the strain concentration tensor using the reduced elastic stiffness, we can 

obtain the effective modulus of the composite, which is expressed as Eq. (C4). 

𝑳𝐞𝐟𝐟 = (𝑐0𝑳0 + 𝑐1𝑳1
𝑹: 𝑻𝑹): (𝑐0𝑰 + 𝑐1𝑻𝑹)−1. 

(C4) 

where 𝑻𝑅 = [𝑰 + 𝑺: 𝑳0: (𝑳1
𝑅 − 𝑳0)]−𝟏 

It should also be noted that when the effective inclusion method is adopted, a perfect bonding 

condition would be applied at the interface. 

 


