Seed dispersal by mallards on spring migration can

speed up climate-driven plant range shifts

Erik Kleyheeg, Wolfgang Fiedler, Kamran Safi, Jonas Waldenstrom, Martin Wikelski, and
Mariélle L. van Toor

November 29, 2018

Explanation

Here we have prepared commented R-code that we used for preparing and running the analyses used in
the study “Seed dispersal by mallards on spring migration can speed up climate-driven plant range shifts”.
As the original code was extensive with more than 4,500 lines of code, we decided to break it down and
only provide the parts relevant to replicating the preparation of movement data for the mallard migration
simulator, running the simulations, and super-imposing gut retention on the simulated trajectories. To keep
this file compact and digestiable, we decided to leave out parts of code that are more specific to the study
system. We therefore decided not to include the sampling tool for destination locations, the identification of
stopover locations, or the dispersal into wetlands.

We performed the simulations using the R-library batchtools, a library providing a framework to manage
R jobs and statistical experiments and their results on batch computing systems. We did not include our
implementation of batchtools, but we encourage interested readers to take a look at the package, as we think
it is a convenient and powerful tool for large simulation experiments.

A note on our use of the empirical Random Trajectory Generator: At the time of writing the paper,
this movement model by Technitis et al. has not been published yet, and so we cannot release the code for this
documentation at this point. An R-package for the eRTG and the accompanying paper are in preparation.
That means that at this point, the code provided in this documentation is only partly functional, as it
depends on the functions that are part of the eRTG-package. To allow for a comprehensive documentation of
our analyses, we have thus included a dataset of 1,000 randomized trajectories produced with the eRT'G for
working with this script in the supplementary information (file: “data/sim.tracjectories. RData”). As soon as
the paper and package for the eRTG are released, the step lengths, turning angles, etc. should be possible to
use with the package for simulating own trajectories.

Required packages

We have listed all packages with the version used in this document here:

library (momentuHMM)
library(plyr)
library(maptools)
library(ggplot2)
library(RColorBrewer)
library(lubridate)
library(geosphere)
library(circular)
library(psych)
library (MASS)
library(raster)
library(rgdal)

If you wish to install the packages required to run the code in this document, you can use the installation
script below. It installs all packages not present on your system, with the exception of the package rgdal, as
this package has external dependencies you might have to install first. This will strongly depend on your
operating system.

check.packages <- c('momentuHMM', # Hidden Markov Models for animal movement data
'plyr', # data handling
'maptools', # calculating solar noon
'ggplot2', # plotting library
'lubridate', # time operations
'geosphere', # spherical trigonometry
'circular', # circular statistics (for turning angles)
'psych') # to include time of day in the HMM

not.installed <- !check.packages %in}% rownames(installed.packages())

for(i in not.installed){
install.packages(i)

}

Importing and preparing the tracking data

The first step is to import the tracking data into your R-session and prepare it for running the Hidden
Markov Model using the package momentuHMM. The data available with the study, “mlrd.migrations.csv”,
has already been cleaned, i.e. we removed duplicate timestamps, non-migratory individuals, and has the
missed fixes included in the data. Ground speed was provided by the tags used to track the mallards and thus
did not need to be computed separately. We calculated step length (using the package geosphere, function
distGeo()) and turning angle (using package momentuHMM, function momentuHMM:::turnAngle) prior to
including the missed fixes in the data.

Here, we will prepare the data for applying hidden Markov models with the package momentuHMM.
Specifically, we will demonstrate how we calculated the time of day relative to solar noon for each location.

amport data
df <- read.delim('data/mlrd.migrations.csv', header=T, sep=',', as.is=TRUE)

convert column containing the timestamp to POSIX-format (all timestamps are in UTC)
df$timestamp <- as.POSIXct(df$timestamp, tz='UTC')

calculating time of day from longitude, latitude and timestamp

df <- ddply(df, 'ID', function(id){ # apply this function to each individual
id$tod <- unlist(lapply(l:nrow(id), function(j){ # apply this function for every row j

if (is.na(id$location.long[jl)){return(NA)} # return NA for missed fizes
convert location in row j to "SpatialPoints”
loc <- SpatialPoints(id[j,c('location.long', 'location.lat')],

proj4string=CRS('+proj=longlat +datum=WGS84'))

calculate time of solar nmoon for the given location
noon <- solarnoon(loc, id$timestamp[j]l, POSIXct.out=TRUE)$time

calculate time difference between time at location and solar noon

tod <- as.numeric(difftime(id$timestamp[j], noon, units='hours'))+12

calculate time of day relative to midnight
tod <- ifelse(tod<24, tod, tod-24)
return(tod)

)
return(id)

b

Covariates of the model (here: time of day) cannot have missing data
we will approximate time of day for missed fizes
to do so, we calculate the expected timestamp at the missed fiz (last timestamp + 1 h)
and we will use the the location of the previous fiz
df <- ddply(df, 'ID', function(id){
for(j in 2:nrow(id)){
if (is.na(id$tod[j1)){

"try" to turn the object into a SpatialPoints-object
sp <- try(SpatialPoints(as.data.frame(id[j-1,c('location.long', 'location.lat')]),
proj4string=CRS('+proj=longlat +datum=WGS84')))

if it doesn't work (it's a missed fiz), try to find the closest location
n <-1
while(class(sp)=='try-error')q{
a <- j-(n+1)
sp <- try(SpatialPoints(as.data.frame(id[a,c('location.long', 'location.lat')]),
proj4string=CRS('+proj=longlat +datum=WGS84')))
n <- n+l

}

once the closest location ts found, calculate time of day
noon <- solarnoon(sp, id$timestamp[j]l, POSIXct.out=TRUE)$time
tod <- as.numeric(difftime(id$timestamp[j], noon, units='hours'))+12
id$tod[j] <- ifelse(tod<24, tod,tod-24)
}
}
return(id)

b

check for missing entries after this approxzimation of time of day for missed fizes:
any(is.na(df$tod))

[1] TRUE

there still is on e missing tod for individual JC75963

this 1s the very first location for this individual, so we remove it from the data:
df <- df[!is.na(df$tod),]

convert dataframe to "momentuHMMData" using the momentuHMM converstion function
df <- momentuHMM: ::momentuHMMData (df)
#df$sex <- factor(df$sex)

Applying Hidden Markov Models using momentuHMM

Now that we have included the time of day in the dataset, we can define the starting parameters for the
Hidden Markov model, and apply the model to the data. Here, we use the starting parameters that we used
for our final model. Again, in our final model we used three data streams (ground speed, turning angle, and
step length), and used time of a day as a covariate for transition probabilities (ducks often start migrating at
dusk/during the night). We previously determined heuristically that the best fitting distributions for the
data streams were:

o Ground speed (in m/s): Gamma distribution
o Turning angle (in radian): Wrapped Cauchy distribution
o Step length (in km): Weibull distribution

starting parameters for ground speed:

par.speed <- c(0.01, 2.00, 20.00, # mean ground speed for states 1, 2, and 3
0.10, 1.00, 5.00, # s.d. of ground speed for states 1, 2, and 3
0.10, 0.00, 0.00) # zero-mass

par.angle <- c(pi, pi, pi, # mean angle for states 1, 2, and 3
0.5, 0.5, 0.95) # concentration for states 1, 2, and 3

par.step <- c(0.10, 1.00, 2.50, # shape parameter for states 1, 2, and 3
0.01, 5.00, 70.00, # scale parameter for states 1, 2, and 3
0.10, 0.00, 0.00) # zero-mass

prepare design matrixz using
par.final <- getParDM(data=df, # the data to which to apply the HMM
nbStates=3, # number of states
dist=list(step='weibull', # distributions for the three data streams
speed="'gamma',
angle='wrpcauchy'),
Par=1list(step=par.step, # starting parameters
speed=par.speed,
angle=par.angle),
estAngleMean=(list(angle=T))) # estimate the mean turning angle

run Hidden Markov Model (this can take a while)
hmm.final <- fitHMM(data=df,
nbStates=3,
dist=list(step='weibull', speed='gamma', angle='wrpcauchy'),
Par=par.final,
estAngleMean=(list(angle=T)),
formula=~cosinor(tod, period=24)) # use time of day as covariate

##

Fitting HMM with 3 states and 3 data streams

#H# -
step ~ weibull(shape=~1, scale=~1, zeromass=~1)

speed ~ gamma(mean=~1, sd=~1, zeromass=~1)

angle ~ wrpcauchy(mean=~1, concentration=~1)

##

Transition probability matrix formula: ~cosinor(tod, period = 24)

##

Initial distribution formula: ~1
##

DONE

print model summary
#print (hmm. final)

plot the model
#plot (hmm. final)

plot stationary state probabilities as a function of time of day:
#plotStationary (hmm. final, plotCI=T)

you can also plot the individual tracks annotated with state identity
#plot (hmm. final, plotTracks=T, animals=unique (df$ID))

The model above might differ slightly form the final model we used for our study. We have thus included
our final model in the supplementary dat folder as well (file: “data/20180605_hmm_ final. RData”), and will
continue this example with the model we used, rather than the model presented above.

Preparing the tracking data for the eRTG

With the finished HMM, we can inform our tracking data with the most likely sequence of states, for which
we used the Viterbi algorithm included in the momentuHMM package. Assuming that state identity does
not change within a GPS-burst, we will use the state identities from the model data (which was subsampled
from the full, bursted data) to assign state identity to the full, bursted data. We will then retain only bursts
assigned with state 3, corresponding to flight, to compute step lengths and turning angles and prepare the
data for informing an initial eRT'G at the highest sampling rate of 1 second.

amport model used in the study

the file contains the model, as well as the data and parameters used for the model
load('data/20180605_hmm_final.RData')

print (hmm.final)

Value of the maximum log-likelihood: 5203.765

##

##

step parameters:

-

#i# state 1 state 2 state 3

shape 4.580594e-01 5.069955e-01 1.458548e+00
scale 1.133653e-01 5.542915e-01 8.699548e+01
zeromass 4.303736e-08 9.987223e-09 9.997041e-09

##

speed parameters:

-

#i# state 1 state 2 state 3
mean 2.777778e-01 5.064855e+00 24.751876548
sd 1.674406e-09 6.322630e+00 10.316327709

zeromass 8.474216e-01 1.012314e-08 0.001792409

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

angle parameters:

mean

concentration 0.2256364 0.503641

state

1

state 2

state 3

-3.0669764 3.084454 -0.02738578

0.91061213

Regression coeffs for the transition probabilities:

(Intercept)
cosinorCos(tod,
cosinorSin(tod,

(Intercept)
cosinorCos(tod,
cosinorSin(tod,

period
period

period

Transition probability

period =

24) 0.004752597

24) 0.390429225
3 >1

18.66926 -6.

24) -27.36672 -8.

24) 6.97844 4.

1 ->2

-2.999637116

1 ->3 2 > 1 2 ->3
-7.385839 3.873347 -2.175060
2.219863 -1.147285 1.130765
-2.274796 -1.193073 -1.102154
3 > 2
340627
854909
506875

matrix (based on mean covariate values):

state 1

state 2

state

3

state 1 0.9544144 4.550410e-02 8.153494e-05
state 2 0.9939012 5.857734e-03 2.411027e-04
state 3 1.0000000 1.761394e-19 2.334770e-20

Initial distribution:

ID:
ID:
ID:
ID:
ID:
ID:
ID:
ID:

JC74440
JC75963
JC79575
JCT79706
JC79712
JC79719
JCT79727
JC79736

O O O O O O oo

plot (hmm.final)

Decoding state sequence...

state 1

.000116785
.000116785
.000116785
.000116785
.000116785
.000116785
.000116785
.000116785

O OO O O OO o

state 2

.9998832
.9998832
.9998832
.9998832
.9998832
.9998832
.9998832
.9998832

DONE

state 3

.170746e-18
.170746e-18
.170746e-18
.170746e-18
.170746e-18
.170746e-18
.170746e-18
.170746e-18

Density

Density

0.05 0.10 0.15 0.20

0.00

0.6

03 04 05

0.2

0.0 0.1

- ===
-

All animals

state 1

state 2
—— state 3
— Total

I I
40 60

step
All animals

80 100 120

state 1

state 2
—— state 3
— Total

10 20

speed

30

Density

2->1 1->1

3—>1

00 06

00 06

0.0 0.6

All animals

<
o
state 1
state 2
™ —— state 3
o — Total
N /
S ’
N N ‘
o N ’
\
~
\
N ~ -] \ - ”
1 = “ SR ==
o
o A
o
| | | | |
-1 -T1/2 0 /2 I
angle (radians)
Transition probabilities
] N~ o o 3
] roo roo]
— — — — —
- o] o]
| | | | o | | | o | | |
5 10 15 20 10 15 20 10 15 20
tod tod tod
] N o o o 3
] roo roo]
— N — N —
_ o] o _]
[[[[o [[[o [[[
5 10 15 20 10 15 20 10 15 20
tod tod tod
] N o 3 o o 3
] roo roo]
- [90] — ™ —
_ o] o]
[[[[o [[[o [[[
5 10 15 20 10 15 20 10 15 20
tod tod tod

plotStationary (hmm.final, plotCI=T)

Stationary state probabilities

o _]
— > state 1
o state 2
= o | 3
= 3 state
=
0
o ©
5 o
Q
©
17 <
E? o
S
[
e N
g O |
o
o _|
© I I I I I
0 5 10 15 20
tod

amport full data set containing the bursted data
load('data/mlrd.clean.RData')

use Viterdbi algorithm to decode most likely state sequence
hmm$state.identity <- viterbi(hmm.final)

because each of the GPS-bursts has a unique identifier, we can transfer state identities
of bursts to the full, bursted data set

only keep individuals present in the model

mlrd <- mlrd[mlrd$individual.local.identifier %in% unique(hmm$individual.local.identifier),]
mlrd$state <- NA

apply the following function to each individual:
mlrd.state <- ddply(mlrd, 'individual.local.identifier', function(id){
ddply(id, 'burst', function(b){ # apply this function to each burst
d.id <- unique(b$individual.local.identifier) # individual tdentifier
b.id <- unique(b$burst) # burst tdentifier

find the state identity for the corresponding individual & burst
state <- hmm$state [hmm$individual.local.identifier==d.id & hmm$burst==b.id]
if (length(state)==1){
b$state <- state # assign state identity to burst
}
return(b)
)
b

we will now calculate a new data set containing:

distance between subsequent locations (as predecessor to step length)
time elapsed between subsequent locations

turning angles between subsequent locations

all of these will be calculated separately for each individual & burst

the following function is applied to each individual separately
step.turn <- ddply(mlrd.state, 'individual.local.identifier', function(id){
print (unique(id$individual.local.identifier)) # print individual identifier

if(all(is.na(id$state))){return(NULL)} # this should not apply, but just in case

check whether the individual tracking data contains any bursts tdentified as state 3

if (any(id$state==3)){

only retain bursts identified as state 3
short <- id[id$state==3 & 'is.na(id$state),]

apply the following function separately for each burst:
ddply(short,

we need a minimum of 3 consecutive fizes to calculate turning angles:

'"burst', function(b){

if (nrow(b>3)){

calculate time difference between fizes (in seconds)
tdiff <- c(NA, unlist(lapply(2:nrow(b), function(j){
difftime (b$timestamp[j], b$timestamp[j-1], unit='secs')

190))

calculate spatial distance between fizes (in meters)
dist <- c(NA, unlist(lapply(2:nrow(b), function(j){
distGeo(b[j,c('location.long', 'location.lat')],

190))

b[j-1,c('location.long', 'location.lat')])

calculate turning angles (in radians)
turn <- c(NA, unlist(lapply(2:(nrow(b)-1), function(j){
momentuHMM: : :turnAngle(b[j-1,c('location.long', 'location.lat')],

1), NA)

b[j,c('location.long', 'location.lat')],
b[j+1,c('location.long', 'location.lat')],
type='LL', angleCov=F)

combine in a new data.frame and return from function
return(data.frame(tdiff=tdiff, dist=dist, turn=turn))

}
b
}
b
[1] "JCT74440"
[1] "JCT75963"
[1] "JCT79575"
[1] "JCr9706"
[1] "JCrori2"
[1] "JC7T9719"

10

[1] “Jcror27"
[1] "JCT79736"

now we calculate autocorrelation of step length and turning angle at a lag of 1 step
(i.e., how do step length and turning angle change from one location to the next?)

apply function separately to each individual
step.turn <- ddply(step.turn, 'individual.local.identifier', function(id){

apply function separately to each burst
ddply(id, 'burst', function(b){

calculate step length as distance per unit time
b$step <- b$dist/btdiff

calculate lag at 1 step for step length and turning angle
b$step.lag <- c(NA, diff(b$step, lag=1))
b$turn.lag <- c(NA, diff(b$turn, lag=1))
return(b)
b
b

Initial eRTG with 1 second sampling rate

We used the step.turn data.frame as derived above to derive the initial version of the eRTG:

only return complete cases
step.turn <- step.turn[complete.cases(step.turn),]

we made the simple assumption that mallards fly at speeds >1.5 m/s
step.turn <- step.turn[step.turn$step>1.5,]

this function is part of the eRTG, and thus mot yet avatilable:
#rasterDT <- SteplTurnHist (z=step.turn$turn, y=step.turn$step)
#image (rasterDT)

for wisualisation purposes, we'll approximate what the function as follows:
compute a 2D-kernel density estimator for step length and turning angle
st <- kde2d(x=step.turn$turn, y=step.turn$step, lims=c(-pi, pi, 0, 45), n=101)
st <- raster(st)
st.df <- data.frame(x=coordinates(st)[,1], y=coordinates(st)[,2], value=values(st))
ggplot(st.df, aes(x=x, y=y, fill=value)) +
geom_raster() +
scale_fill_gradientn(name='2D Density', colours=rev(brewer.pal(11l, 'RdY1Bu'))) +
labs(x='Turning angle', y='Step length') + theme_bw() +
scale_x_continuous(breaks=c(-pi, -pi/2, 0, pi/2, pi),
labels=expression(-pi, paste(-1/2,pi), 0, paste(1/2, pi), pi))

11

40 A
30 2D Density
= -
o 0.6
c
Q
o 0.4
D 20-
«n 0.2
Py
104
0-
-T -1/2m 0 1/2m n
Turning angle
approxzimate the autocorrelation in step length & turning angle:
autoD <- approxfun(density.default(step.turn$step.lag))
autoT <- approxfun(density.default(step.turn$turn.lag))
plot(autoD)
Q@ _]
o
©]
o
(@)
8
> <
@®© o T
N
o
| | | | | |
0.0 0.2 0.4 0.6 0.8 1.0

plot(autoT)

m_

autoT
4
|

0.0 0.2 0.4 0.6 0.8 1.0

X

combine objcts into initial 1-s mallard flight eRTG
#st.1s <- list(dtRaster=rasterDT, autoD=autoD, autoT=autoT)

running an initial, unconditional trajectory:
#sim. even <- simm.uncond (250000, start=c(0,0), aO=runif(1, -1*pi, pi), densities=st.1s)

Thinning the initial eRTG

The movement model we used for this study was the empirical Random Trajectory Generator, developed
by Technitis et al. This movement model is a conditional model similar to a biased correlated random walk
that can be best described as a mean-reverting Ornstein-Uhlenbeck process. As mentioned in the explanation
above, the code for this model is, at this date, not yet available, but will be published as an R-package with
accompanying paper. We here provide part of the long trajectory we simulated with the unconditional eRTG
(we provide only a subset as the original file was 118 MB), and thin this to a reduced sampling rate of 300
seconds. We calculate step lengths, turning angles, etc. for the eRTG with a sampling rate of 300 seconds.

load parameters required for the eRTG
derived from the step length and turning angles calculated above
load('data/sim.long.1s.subset.RData')

world azimuthal equidistant projection

for calculating distances from long unconditional trajectory

proj.az <- CRS('+proj=aeqd +lat_0=0 +lon_0=0 +x_0=0 +y_0=0
+ellps=WGS84 +datum=WGS84 +units=m +no_defs')

now we subsample this trajectory by thinning it to every 300th entry

to make sure that this process isn't senstitive to the starting location,

we randomised the starting location several times, and subsample from there

rndm <- rbind.fill(lapply(1:100, function(j){ # randomise starting location 100 times
if(j %in% seq(0,100,10)){print(j)}

13

pick a random starting location out of the first 300 locations
smpl <- rep(F, 300)
smpl [sample(length(smpl), 1)] <- T

then pick every 300-th location following the randomised starting location
short <- sim[rep(smpl, length.out=nrow(sim)),]

recalculate distances & turning angles
po <- spTransform(SpatialPoints(short[,c('x', 'y")],
proj4string=proj.az), CRSobj=CRS('+proj=longlat +datum=WGS84'))

short$d <- c(NA, unlist(lapply(2:nrow(short), function(j){
distGeo(polj,], polj-1,1)

190D

short$a <- c(NA, unlist(lapply(2:nrow(short), function(j){
bearing(po[j,], pol[j-1,1)

P)) * pi/180

short$t <- c(NA, wrap(diff (short$a * pi/180)))

short$lag.d <- c(NA, diff(short$d, lag=1))

short$lag.t <- c(NA, diff(short$t, lag=1))

short <- short[-c(1:2),]

short$repl <- j

return(short)

1))

prepare eRTG with sampling rate of 300 seconds:

make SteplTurnHist

rasterDT <- SteplTurnHist2(x=short$t, y=short$d) # function from eRTG
autoD <- approxfun(density.default(short$lag.d))

autoT <- approxfun(density.default(short$lag.t))

st.300 <- list(dtRaster=rasterDT, autoD=autoD, autoT=autoT)

run a long unconditional track for the 5-min-eRTG
#sim.300 <- simm.uncond (250000, start=c(0,0), aO=runif(1, -1*pi, pi), densities=st.300)

Simulating random trajectories using the eRTG

As we cannot demonstrate the actual simulation of randomised trajectories using the eRTG, we have included
a data set containing 1,000 randomised trajectories from our full simulation data set for exploration:

tracks were simulated between two fized locations:
Lake Constance (starting location)
breeding area, sampled with destination sampling tool

prior to each simulation, we projected the corresponding location pair

to a two-point equidistant projection:

proj.tpe <- CRS(pasteO("+proj=tpeqd +lat_1=", start@coords[,2], " +lon_1=", start@coords[,1],
" +lat_2=", destination@coords[,2], " +lon_2=", destination@coords[,1],
" 4+ 0=0 +y_0=0 +a=6371000 +b=6371000 +units=m +no_defs"))

load random tracks:

load('data/1000randomtracks.RData')
this object is a list containing 1,000 data.frames, each corresponding to a random track

14

you can plot single trajectories as:

i<-12
ggplot (tracks[[i]]$track, aes(x=x, y=y)) + geom_path() +
geom_point (data=tracks[[i]]$track[1,], colour='red') # mark starting location

150000 -
100000 -
>
50000 -
0-
-2e+05 0e+00 2e+05
X

all tracks are projected (species two-point equidistant projections)
we can re-project all of them to long-lat:

tracks <- lapply(l:length(tracks), function(i){
t <- tracks[[i]]$track
p <- tracks[[i]]$proj
po <- SpatialPoints(t[,c('x', 'y')], projéstring=p)
po <- spTransform(po, CRSobj=CRS('+proj=longlat +datum=WGS84'))
t$long <- coordinates(po) [,1]
t$lat <- coordinates(po) [,2]
return(t)

b

now we can plot the tracks with a map as reference:
load('data/base.map.RData')
i<-12
ggplot (map) +
geom_polygon(aes(x=long, y=lat, group=group), fill='cornsilk3', colour='greyl5', size=0.3) +
geom_path(data=tracks[[i]], aes(x=long, y=lat)) +
geom_point (data=tracks[[i]][1,], aes(x=long, y=lat), colour='red') +
geom_point (data=tracks[[i]] [nrow(tracks[[i]]),], aes(x=long, y=lat), colour='blue') +

15

theme_bw ()

65 -

60 ¥

554

lat

50

45 A) R

0 10 20 30 40
long

Super-imposing gut retention on simulated trajectories

We calculated probabability of dispersal of each seeds using the gut retention curves for small (short retention
time) and large seeds (long retention time) as presented in the paper. We used integration to calculate
cumulative probabilities, i.e. at each location, we integreated the probability of a seed leaving the duck’s gut
over five minute intervals (from 5 minutes prior to a location to the time of sampling)

we can also include fasting time prior to migration
just change the number for the object fast.time below

fast.time <- 0 # time in seconds

apply this function to each simulated trajectory
tracks <- lapply(l:length(tracks), function(i){

track <- tracks[[i]]

calculate time at each location relative to start of migration (if fast.time == 0)
1f fast.time ts > 0, this time is relative to seed ingestion

track$time <- seq(0, (nrow(track)-1)*300, 300)/3600 + fast.time

compute cumulative extretion probability for small seeds

track$cum.small <- c(0, unlist(lapply(2:nrow(track), function(j){
integrate(f=dgamma, lower=track$time[j-1], upper=track$time[j], shape=2.7, rate=0.63)$value

16

H»

compute cumulative extretion probability for large seeds
track$cum.large <- c(0, unlist(lapply(2:nrow(track), function(j){

integrate(f=dgamma, lower=track$time[j-1], upper=track$time[j], shape=2.7, rate=0.44)$value
B

return(track)

b

plot trajectories with super—imposed cumulative excretion probability:
the code below plots excretion probability for small seeds
exchange "cum.small" for "cum.large" if you like to plot excretion prob. for large seeds
i<-12
ggplot (map) +
geom_polygon(aes(x=long, y=lat, group=group), fill='cornsilk3', colour='greyl5', size=0.3) +
geom_path(data=tracks[[i]], aes(x=long, y=lat, colour=cum.small)) +
scale_colour_viridis_c(name="Excretion probability") +
geom_point(data=tracks[[i]][1,], aes(x=long, y=lat), colour='red') +
geom_point (data=tracks[[i]] [nrow(tracks[[i]]),], aes(x=long, y=lat), colour='blue') +
theme (legend.position='bottom')

65 -

{.“:'3 E

60 -

lat

50 -

45-

40~

0 10 20 30 40
long

Excretion probability “

0.000 0.005 0.010 0.015

17

	Explanation
	Required packages
	Importing and preparing the tracking data
	Applying Hidden Markov Models using momentuHMM
	Preparing the tracking data for the eRTG
	Initial eRTG with 1 second sampling rate
	Thinning the initial eRTG
	Simulating random trajectories using the eRTG
	Super-imposing gut retention on simulated trajectories

