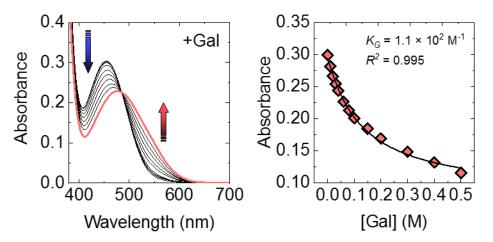


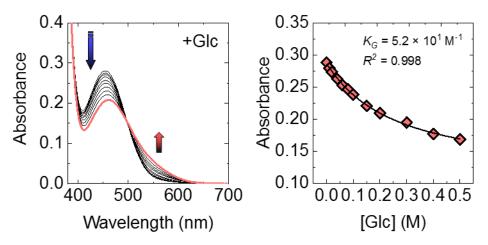
Supplementary Material

A Saccharide Chemosensor Array Developed Based on an Indicator Displacement Assay Using a Combination of Commercially Available Reagents

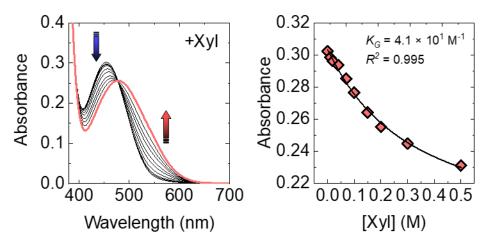
Yui Sasaki, Zhoujie Zhang and Tsuyoshi Minami*

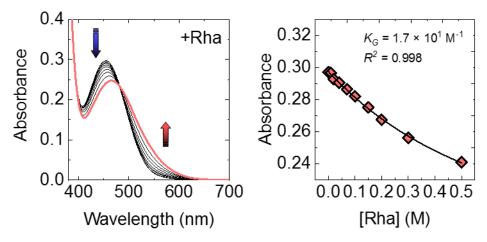

Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, Japan

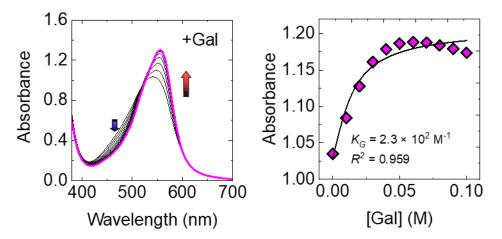
* Correspondence: Tsuyoshi Minami tminami@iis.u-tokyo.ac.jp

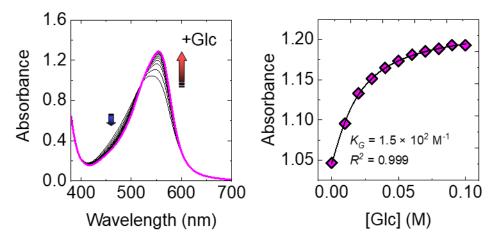

Contents

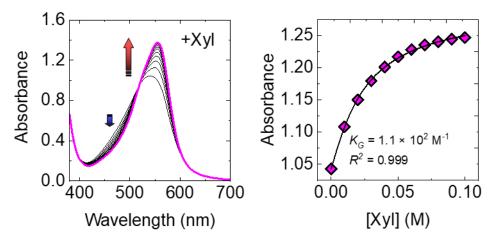
1.	UV-vis measurements for saccharides	S2
2.	FAB MS Analysis	S6
3.	Analysis of Variance	S8
4.	Linear Discriminant Analysis (LDA)	S9
5.	Results of Quantitative Analysis	S13

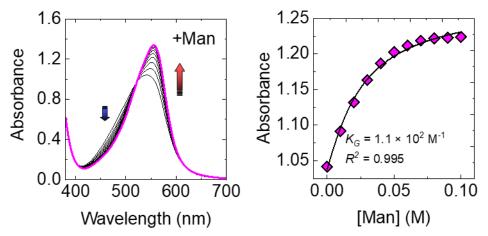

1 UV-vis measurements for saccharides

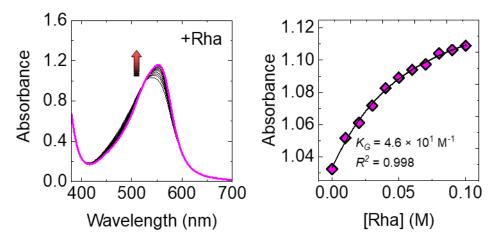

Supplementary Figure 1. UV – vis spectra of the ARS (40 μ M) – 3-NPBA (6 mM) complex upon the addition of galactose in a phosphate buffer solution (100 mM) at a pH of 7.4 at 25 °C.

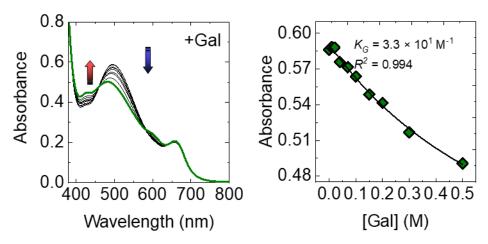

Supplementary Figure 2. UV – vis spectra of the ARS (40 μ M) – 3-NPBA (6 mM) complex upon the addition of glucose in a phosphate buffer solution (100 mM) at a pH of 7.4 at 25 °C.

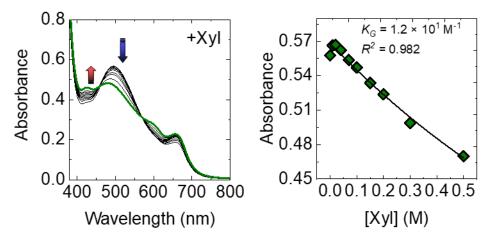

Supplementary Figure 3. UV – vis spectra of the ARS (40 μ M) – 3-NPBA (6 mM) complex upon the addition of xylose in a phosphate buffer solution (100 mM) at a pH of 7.4 at 25 °C.


Supplementary Figure 4. UV – vis spectra of the ARS (40 μ M) – 3-NPBA (6 mM) complex upon the addition of rhamnose in a phosphate buffer solution (100 mM) at at a pH of 7.4 at 25 °C.

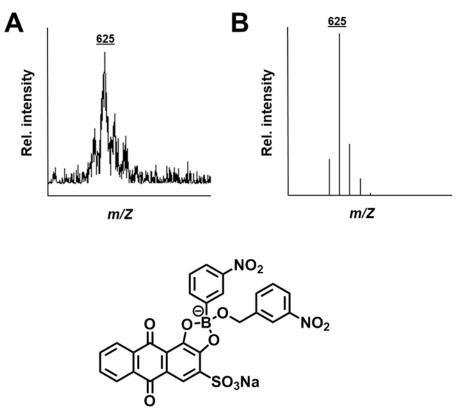

Supplementary Figure 5. UV – vis spectra of the BPR (40 μ M) – 3-NPBA (6 mM) complex upon the addition of galactose in a phosphate buffer solution (100 mM) at a pH of 7.4 at 25 °C.


Supplementary Figure 6. UV – vis spectra of the BPR (40 μ M) – 3-NPBA (6 mM) complex upon the addition of glucose in a phosphate buffer solution (100 mM) at a pH of 7.4 at 25 °C.

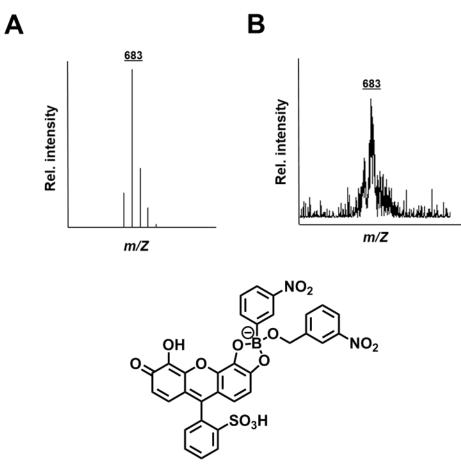

Supplementary Figure 7. UV – vis spectra of the BPR (40 μ M) – 3-NPBA (6 mM) complex upon the addition of xylose in a phosphate buffer solution (100 mM) at a pH of 7.4 at 25 °C.


Supplementary Figure 8. UV – vis spectra of the BPR (40 μ M) – 3-NPBA (6 mM) complex upon the addition of mannose in a phosphate buffer solution (100 mM) at a pH of 7.4 at 25 °C.

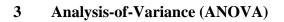
Supplementary Figure 9. UV – vis spectra of the BPR (40 μ M) – 3-NPBA (6 mM) complex upon the addition of rhamnose in a phosphate buffer solution (100 mM) at a pH of 7.4 at 25 °C.

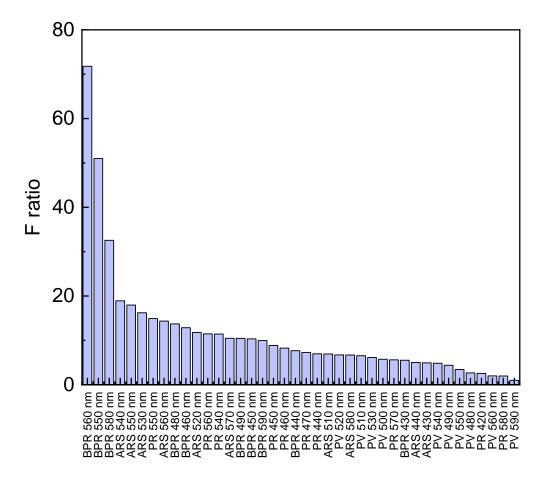


Supplementary Figure 10. UV – vis spectra of the PV (40 μ M) – 3-NPBA (6 mM) complex upon the addition of galactose in a phosphate buffer solution (100 mM) at a pH of 7.4 at 25 °C.

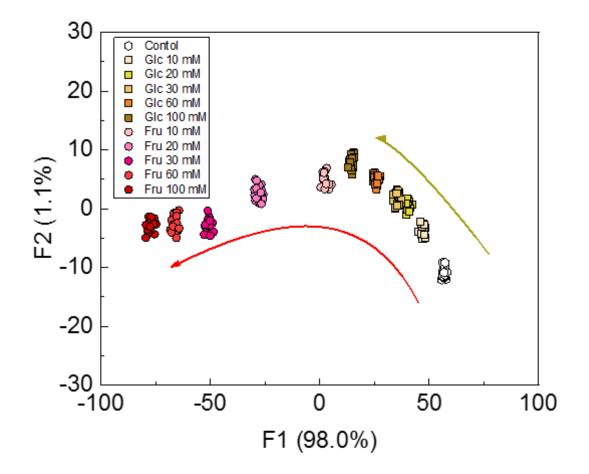

Supplementary Figure 12. UV – vis spectra of the PV (40 μ M) – 3-NPBA (6 mM) complex upon the addition of xylose in a phosphate buffer solution (100 mM) at a pH of 7.4 at 25 °C.

2 FAB MS Analysis


Chemical Formula: C27H15BN2NaO12S-

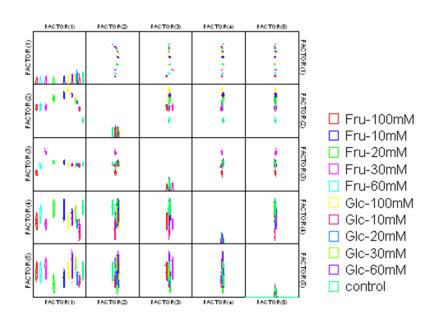

Supplementary Figure 13. (A) FAB MS (negative) spectra of the ARS–3-NBPA complex. (B) Calculated isotope pattern for [ARS-2H₂O+3-NPBA+3-NBA-H]⁻. Matrix: 3-nitrobenzylalcohol.

Chemical Formula: C₃₂H₂₀BN₂O₁₃S⁻


Supplementary Figure 14. (A) FAB MS (negative) spectra of the PR–3-NBPA complex. (B) Calculated isotope pattern for [PR-2H₂O+3-NPBA+3-NBA-H]⁻. Matrix: 3-nitrobenzylalcohol.

Supplementary Figure 15. One-way ANOVA result of the qualitative analysis.

4 Linear Discriminant Analysis (LDA)

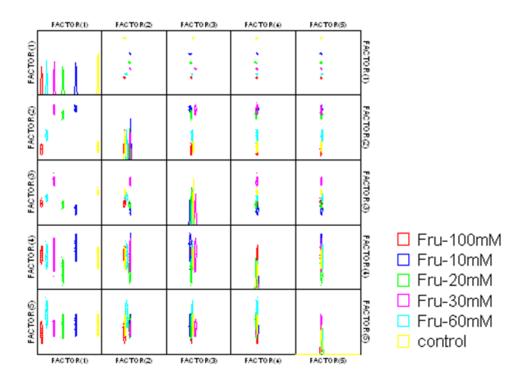


Supplementary Figure 16. LDA plots for the semi-quantitative assay for Fru (\circ) and Glc (\Box) at the concentration range of 0-100 mM. Twenty repetitions were measured for each concentration.

	Fru- 100mM	Fru- 10mM	Fru- 20mM	Fru- 30mM	Fru- 60mM	Glc- 100mM	Glc- 10mM	Glc- 20mM	Glc- 30mM	Glc- 60mM	control	%corre ct
Fru- 100mM	20	0	0	0	0	0	0	0	0	0	0	100
Fru- 10mM	0	20	0	0	0	0	0	0	0	0	0	100
Fru- 20mM	0	0	20	0	0	0	0	0	0	0	0	100
Fru- 30mM	0	0	0	20	0	0	0	0	0	0	0	100
Fru- 60mM	0	0	0	0	20	0	0	0	0	0	0	100
Glc- 100mM	0	0	0	0	0	20	0	0	0	0	0	100
Glc- 10mM	0	0	0	0	0	0	20	0	0	0	0	100
Glc- 20mM	0	0	0	0	0	0	0	20	0	0	0	100
Glc- 30mM	0	0	0	0	0	0	0	0	20	0	0	100
Glc- 60mM	0	0	0	0	0	0	0	0	0	20	0	100
control	0	0	0	0	0	0	0	0	0	0	20	100
Total	20	20	20	20	20	20	20	20	20	20	20	100

Supplementary Table 1 Jackknifed classification matrix of the qualitative assay for Fru and Glc

Canonical Scores Plot

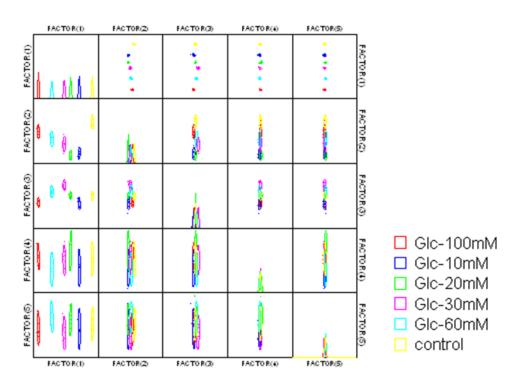


Supplementary Figure 17. Canonical score plot of the qualitative assay for Fru and Glc.

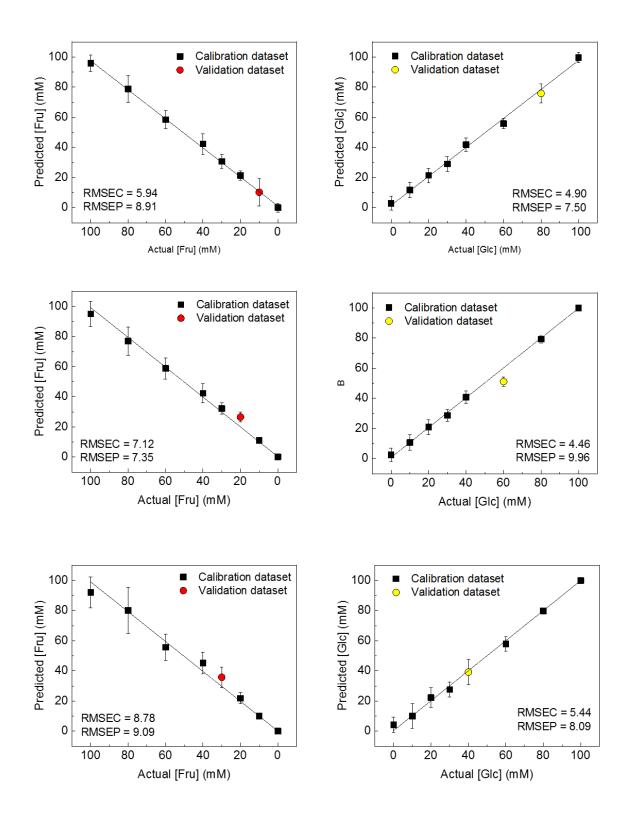
Jackknifed Classification Matrix										
	Fru-100mM	Fru-10mM	Fru-20mM	Fru-30mM	Fru-60mM	control	%correct			
Fru-100mM	20	0	0	0	0	0	100			
Fru-10mM	0	20	0	0	0	0	100			
Fru-20mM	0	0	20	0	0	0	100			
Fru-30mM	0	0	0	20	0	0	100			
Fru-60mM	0	0	0	0	20	0	100			
control	0	0	0	0	0	20	100			
Total	20	20	20	20	20	20	100			

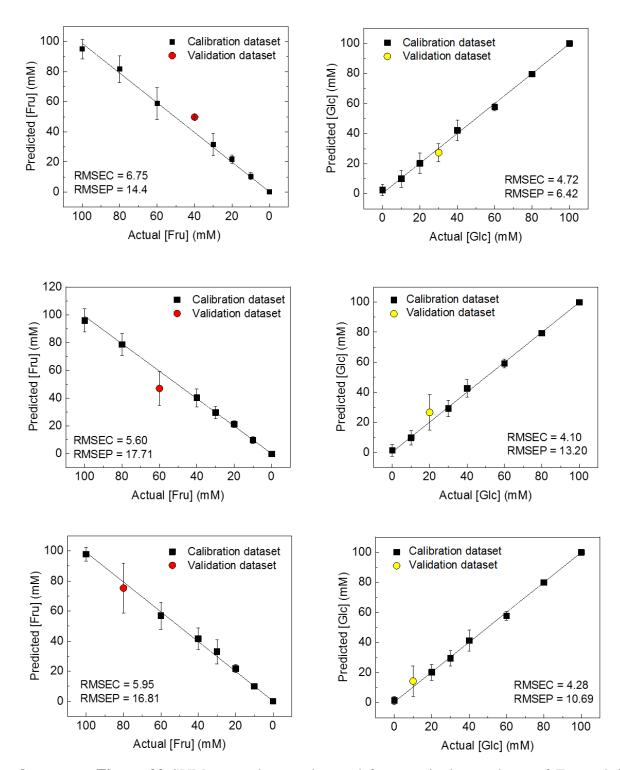
Supplementary Table 2 Jackknifed classification matrix of the qualitative assay for Fru

Canonical Scores Plot


Supplementary Figure 18. Canonical score plot of the qualitative assay for Fru.

Supplementary Material


Jackknifed Classification Matrix										
	Glc-100mM	Glc-10mM	Glc-20mM	Glc-30mM	Glc-60mM	control	%correct			
Glc-100mM	20	0	0	0	0	0	100			
Glc-10mM	0	20	0	0	0	0	100			
Glc-20mM	0	0	20	0	0	0	100			
Glc-30mM	0	0	0	20	0	0	100			
Glc-60mM	0	0	0	0	20	0	100			
control	0	0	0	0	0	20	100			
Total	20	20	20	20	20	20	100			


Supplementary Table 3 Jackknifed classification matrix of the qualitative assay for Glc

Supplementary Figure 19. Canonical score plot of the qualitative assay for Glc.

Supplementary Figure 20 SVM regression results used for quantitative analyses of Fru and Glc mixtures. The values of the root-mean-square errors of calibration (RMSEC) and prediction (RMSEP) (shown as insets) attest to the high accuracies of the model and its predictive capacity.