
Appendix.

A. Definite integrals. For the convenience of the reader, we provide the definite integrals
required to compute the residual level function F (γ, ω) from Equation (3.15), the gradient ∇F from
Equations (3.19) and (3.20), and the approximation of the Hessian, given in Equation (4.8). For the
sake of generality we denote poles as ω1 and ω2, without conjugation although some formulation
require the conjugation or sign change of ω1 or ω2. Recall that the functions G(t) and h(t) are
piecewise constant and determine the integral boundaries, written as a and b.

The calculation of Wk,ℓ, W

�

k,ℓ, Xk,ℓ, X

�

k,ℓ, Yk,ℓ, and Zk,ℓ requires the following integral:

∫ b

a

dt

(t− ω1)(t− ω2)
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1

ω1 − ω2

[

ln
(b− ω1)

(a− ω1)
+ ln

(a− ω2)

(b− ω2)

]

For the ’diagonal’ terms Wk,k and X

�

k,k it holds than ω1 = ω2. In this case we can re-write

the expression without logarithms. This integral is also required for ∇θk:

∫ b

a

dt

(t− ω1)2
=

b− a

(b− ω1)(a− ω1)

Note that this is not the case for the X, Z, and Y , where the signs and/or conjugations of ω1 and
ω2 differ.

For θk and θ

�

k we require the following integral:

∫ b

a
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The calculation of ∇W k,ℓ, ∇Xk,ℓ, ∇Y k,ℓ, and ∇Zk,ℓ requires the integral:

∫ b
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=

b− a

(ω1 − ω2)(b− ω1)(a− ω1)
−

ln (b−ω1)
(a−ω1)

(ω1 − ω2)2
+

ln (b−ω2)
(a−ω2)

(ω1 − ω2)2

The ’diagonal’ term ∇W k,k can again be expressed without logarithm:

∫ b

a

dt
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[
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]

In the approximation of the Hessian the terms ∇∇W i,j , ∇∇Xi,j , ∇∇Y i,j , and ∇∇Zi,j require
yet another integral. This one is given by:

∫ b
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Here the ’diagonal’ term is given by:

∫ b
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3
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+

1

(−b+ ω1)3

]

B. Obtaining benchmark problems from a matrix. In this short appendix we discuss
a method to generate a large set of intervals I from a given eigenproblem corresponding to an
Hermitian matrix M . The objective is to obtain a benchmark test set for filtered subspace iteration,
as a means to compare filters without having to solve each problem separately.

Interior eigensolvers based on filtered subspace iteration are sensitive to the spectrum of M
near the search interval I. Thus, the choice of the search intervals is critical for testing an interior
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eigensolver. Users often select the search interval motivated by some structure in the spectrum of
M , such as the HOMO-LUMO gap in Density Functional Theory methods. Our aim is to create
a large set of intervals that represent a variety of real-world use-cases, especially those based on
the selection of intervals influenced by the structure of the spectrum. To this end, we propose a
method to obtain search intervals by exploiting the distribution of the eigenvalues of M . Instead
of choosing the intervals directly, we compute a set of endpoints E = {a1, a2, ...}, and then form
intervals Ii,j = [ai, aj ] with ai, aj ∈ E and ai < aj .

These endpoints should represent the neighborhood of an identifiable spectral feature, such as
a spectral gap or a cluster; we refer to them as “feature points”. Given a function φ ∈ C2 that
approximates the eigenvalue density, we consider feature points to be the real zeros of the first
and second derivative of φ. A good candidate for φ can be obtained, for example, via the Kernel
Polynomial Method (KPM) which constructs a polynomial of degree m that approximates the
spectral density. The zeros of φ′ are stationary points; assuming that φ is a good approximation
of the eigenvalue density, a local maximum may indicate a high density of eigenvalues or even a
cluster. Conversely, a local minimum corresponds to a potential gap in the spectrum. Inflection
points of φ may indicate a change in the increase or decrease of the (approximated) eigenvalue
density, signaling a relatively small spectral gap. By choosing a large m ≈ 45 it is possible to
obtain thousands of intervals for a single matrix M . The large problem set can be used to obtain
the subspace convergence rates and the condition numbers of the linear system solves without
solving each eigenproblem in the benchmark set. Such an approach is limited by the availability
of the entire spectrum of M , and thus is only applicable for small to medium sized eigenproblems.

For instance, the subspace convergence rate (see Equation (2.4)) depends only on the filter
value for the eigenvalues. If the entire spectrum of M is available, we can obtain the convergence
rate by computing these values directly. In the same fashion, each filtered interval results in a
number of shifted linear system solves of the form M − Izi (see Equation (2.1)). When Krylov-
based methods are used to solve these systems, the overall performance depends on the condition
number. Since M is Hermitian, the shifted matrix is still normal. As a result the singular values
of M − Izi are given by σi = |λi − zi|, where λi is the ith eigenvalue of M . By proceeding in this
manner for all the poles zi, we can inexpensively obtain the condition number for all the system
solves. Usually, the solve with the highest condition number dictates the overall performance,
which is what we used to motivate our analysis of box constraints in Section 4.4.2.

C. List of filters. The filters presented in Section 2 are provided here. For a given filter
function

f(t, w, γ) =

q
∑

k=1

[

γk

t− wk

+
γk

t− wk

−
γk

t+ wk

−
γk

t+ wk

]

we provide only the poles in the "first quadrant" of the complex plane—that is, the poles with
positive real and imaginary parts—and the corresponding coefficients γ.

|t| ∈ [0, .95) [.95, 1.05) [1.05, 1.4) [1.4, 5) [5,∞)

Gγ-SLiSe(t) 1 .01 10 20 0

|t| ∈ [0, .95) [.95, .995) [.995, 1.005) [1.005, 1.05) [1.05, 1.1)

Gη-SLiSe(t) 1 4 0.5 4 0.6
GBox-SLiSe(t) 1 4 2 4 0.6

|t| ∈ [1.1, 1.3) [1.3, 1.8) [1.8, 3) [3,∞)

Gη-SLiSe(t) (cont’d) 1 0.3 0.1 0
GBox-SLiSe(t) (cont’d) 1 0.3 0.1 0

Table C.1: Weight functions for filters discussed in this paper.
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Poles ω Coefficients γ

0.999687712591797 + 0.0117367635577924i 0.006050012497458− 0.000227036554136i
0.991596517222374 + 0.093208856178882i 0.021484299350510− 0.003666847993474i
0.903848148311606 + 0.327740045699974i 0.055938387061383− 0.032384567818443i
0.440319857798568 + 0.732970137475905i 0.054079510922005− 0.122837701171251i

Table C.2: γ-SLiSe, a filter meant to replace the Gauss filter

Poles ω Coefficients γ

0.999986323489133 + 0.002453510792541i 0.00110213725846833− 7.98515806042 · 10−6i

0.999401600189637 + 0.024159213959740i 0.00768847889630669− 0.000333793441122i
0.983469964312691 + 0.160816338804574i 0.04592568742949140− 0.008858565519222i
0.628559997051189 + 0.718255201795431i 0.11139119375850727− 0.147357486573937i

Table C.3: η-SLiSe, a filter meant to replace the Elliptic filter. Obtained with a penalty parameter
of c = −1.3 · 10−6

Poles ω Coefficients γ

0.999517437449349 + 0.0011346403206723i 0.000600799688893− 0.0001380523176106i
0.996122208058289 + 0.0169588203859498i 0.006148402177611− 0.0012349951550185i
0.971590779276380 + 0.1314326323772290i 0.039288214664051− 0.0095779819369782i
0.632009932807876 + 0.6589465004506030i 0.111997418650841− 0.1454789177402232i

Table C.4: ζ-SLiSe, a filter meant to replace the Elliptic filter that violates Guideline 1

Poles ω Coefficients γ

0.999997864241235 + 0.002199301304944i 0.000920693720425− 2.62225614322 · 10−6i

0.999817083735386 + 0.019255687759249i 0.006309876577596− 0.000106451402529i
0.993359173161426 + 0.135785991680408i 0.040771709455088− 0.003927802442013i
0.694622923894908 + 0.732441949783473i 0.135841041422952− 0.150283641573960i

Table C.5: κ-SLiSe, a filter meant to replace the Elliptic filter with Krylov solvers that violates
Guideline 1. Obtained with a box constraint of lb = 0.0022
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