Supplementary information

1.  Material and methods
Our overall methodology can be described as follows: 
a) micro scale virtual circuits implementing synaptic plasticity through asynchronous communicating processes are first defined
b) meso scale virtual circuits corresponding to basic cognitive processes are then composed out of these micro scale circuits 
c) virtual circuits are finally compiled into virtual code to be interpreted by a virtual machine.
1.1 Bottom up design of virtual circuits
The basic units of processing used here are constituted by threads. In Computer science, a thread is a sequence of instructions that executes concurrently with other threads, may coexist with other threads to form a process and share resources such as memory. In the present context, a thread corresponds either to a single or to a group of neurons and will be represented by a symbolic expression enclosing an instruction tree. Two essential differences between neurons and threads allow for the later to represent groups of neurons that might be interleaved at a higher level i.e.,
· contrary to a neuron, a thread can be simultaneously a source and a recipient by maintaining parallel asynchronous communications
· contrary to traditional neuron models in which incoming signals are summed in some way into an integrated value, thread  inputs can be processed individually.
Sets of threads linking perception and action can assembled to into functional unit called fibers. When activated by sensors, fibers constitute dynamical processes, called streams, which do correspond to active Hebbian cell assemblies27. Hebbian cell assemblies represent a theoretical framework that offers functional explanations of psychological phenomena by linking them to physiological processes. As such they do provide an interface between the neural and cognitive levels. In our formalism, streams are driven by a virtual machine that similarly functions as an interface. In computer science, the concept of a virtual machine, exemplified by the Java machine, constitutes the key mechanism that allows for interfacing software with its physical support i.e., hardware. The concept of a virtual machine that we use here basically allows for emulating the execution of a program in a symbolic language S on a system having its own logical language L. Such a machine functions thus as an interface which allows for defining mesoscale circuits independently of the way the microcircuits are actually implemented. In the context of a model of brain multi-level structures (NB in the sense of a functional hierarchy of entities such as neuron → neural assemblies → cognitive states →.. i.e., to be distinguished from a topological arrangement of neuronal layers, such as the visual cortical layers V1 → V2 → V4 → IT → ..), using a virtual machine means that low level physiological details can be ignored and models of neural computation formulated by relating input and output (i.e., perception and behavior) at a symbolic level. Streams driven by virtual machines thus represent a computational framework that, equally to cell assemblies, provides an interface between the neural and cognitive levels. On the symbolic  cognitive side S of the machine considered here, threads assembled in fibers giving rise to streams can be represented by virtual circuits and compiled into virtual code implications of a logical language L. On its neural side L, these implications are used in turn to deduce just in time instructions that get interpreted by the virtual machine (i.e., this virtual machine actually performs contextual deductions).  Mesoscale circuits thus somehow correspond to cognitive software running on top of a biological substrate. To illustrate this, we present two examples of virtual circuits modeling two cases of simple animal behaviors.  
1.2  A virtual circuit implementing classical conditioning
As a general evolution principle, organisms devise and use “tricks” for their survival. The ability to evaluate a threat by learning predictive relationships e.g., by associating a noise and the presence of a predator, is an example of such tricks realized by classical conditioning. In a classical conditioning experiment, a light tactile conditioned stimulus cs elicits a weak defensive reflex, and a strong noxious unconditioned stimulus us produces a massive withdrawal reflex. After a few pairings of stimuli cs and us, where cs slightly precedes us, a stimulus cs alone triggers a significantly enhanced withdrawal reflex i.e., the organism has learned a new behavior. This can be represented by virtual circuit given in  Fig. 1. 

     sense(cs)-*->=>-
              /|\    |
              LTP    +-motor(X)
               |     |
     sense(us)-+->=>-
Figure 1.  A mesoscale virtual circuit implementing classical conditioning.
In Fig. 1, the threads sense(us) and sense(cs) are coupled with sensors capturing external stimuli us and cs and correspond to sensory neurons. The thread motor(X), where X is a parameter (or variable) that will be instantiated, is coupled with an effector and corresponsd to a motor neuron. Finally, the thread ltp (for long term potentiation) acts as a facilitatory interneuron reinforcing the pathway (i.e. augmenting its weight) between sense(cs) and motor(cs). The communication protocols depicted by the symbol ->=>- and /|\ represent a synaptic transmission (i.e., the symbol ->=>- stands for a synapse) and the modulation of a synapse, and the signs * and + correspond respectively to the conjunction of converging signals and either a choice of converging signals or the splitting of a diverging signal. Classical conditioning then follows from the application of hebbian learning i.e., “neurons that fire together wire together”. Though it is admitted today that classical conditioning in aplysia is mediated by multiple neuronal mechanisms including a postsynaptic retroaction on a presynaptic site, the important issue is that the learning of a new behavior requires a conjoint activity of multiple neurons. This activity in turn depends on the temporal pairing of the conditioned and unconditioned stimuli, which in conclusion leads to implement the thread ltp as a detector of coincidence.
1.3  A virtual circuit implementing a simple case of operant conditioning
The ability to assess and to remember the consequences of one's own actions is another example of associative learning providing survival advantages. In this case, operant conditioning associates an action and its result, which can be positive or negative. Toward this goal, the organism will receive either an excite or an inhibit internal stimulus (corresponding for instance to a reward or punishment) that will lead in turn to a reinforcement or a rejection of the action.
As an example of a simple thought experiment, a pigeon learning to discriminate between grains and pebbles receives two possible vectors I of external visual stimuli. The circuit given in Fig. 2, represents the interaction of four threads sense(I), try(accept(I)), accept(I) and reject(I), together with two threads ltp and two opposite threads ltd (for long term depression). In addition to the external stimuli, this circuit incorporates two internal stimuli excite(accept(I)) and inhibit(accept(I)) that correspond to feedbacks from probing the food according to a predefined set of accepted elements.
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Figure 2  A meso scale virtual circuit implementing simple operant conditioning
At the beginning of the simulation, the pathways from sense(I) to try(pick(I)) is open, while the pathways  to both accept(I) and reject(I) are closed. After a few trials, the pigeon will have learned to close try(pick(I)) and to open either  accept(I) or reject(I). This process matches a fundamental principle in circuit neuroscience according to which inhibition in neuronal networks during baseline conditions allows in turn for disinhibition, which then stands as a key mechanism for circuit plasticity, learning, and memory retrieval. 

1.4  Representing virtual circuits by symbolic expressions
The circuit given in Fig. 1 gives rise to the following symbolic expression s ϵ S:
threads(aplysia(reflex)):
 [thread(sense(us),
   [fire(ltp(sense(cs),motor(cs))),
    send(motor(us))]),
  thread(sense(cs),
   [merge(ltp(sense(cs),motor(cs))),
    send(motor(cs))]),
  thread(motor(X),
   [receive(sense(X)),
    effector(motor(X))]),
  thread(ltp(Q,R),
   [join(Q),
    increment(weight(Q,R))])].
In this example, the instruction tree of each thread reduces to a sequence of virtual instructions such as fire, send, merge, etc, but more generally an instruction tree can contain alternatives commanded by guards.
1.5  Compiling instruction trees into virtual code implications
Virtual code implications are compiled from thread expressions and have the form
Guard => T:Instruction 
where Instruction is a virtual machine instruction, T its clock time, and Guard a logical expression defining a condition e.g., a synchronizing term. As an example, virtual code implications l ϵ L compiled from the above thread sense(us)are
true => 1:fire(ltp(sense(cs),motor(cs)))
true => 2:send(motor(us))
true => 3:end
In this simple example, successive clock time values (i.e., 1,2,3) correspond to a linear list traversal with no guards. More generally, this will give rise to a descent into trees containing guards e.g., excite(pick(I)) guiding the descent into the tree of Fig. 2.
1.6  Microcircuits implementing synaptic plasticity
Virtual circuits rely on communication protocols that are pictured in thread diagrams by iconic symbols representing themselves microcircuits. These protocols can be defined by means of procedures that operate in pairs24
 -	synaptic transmission denoted by  ->=>- is implemented by a send/receive pair
 -	long term potentiation/depression LTP/ is  implemented by a join/merge and link/meet  pairs
 -	short term cache memory STM denoted by -<A>- is implement by a push/pull pair
 -	associative memory LTM  based on long term storage and retrieval processes LTS/LTR and denoted by -{P}- is implemented by a store/retrieve pair.  
2.  Top down construction of a virtual machine
Let us consider a set of fibers together with sets of initial weights for pairs of communicating threads within fibers and sets of elements accepted by fibers. The virtual machine then consists of 
· a set of registers comprising a local clock for each active thread, a sequence number (i.e. seq) for each stream, and four internal stimuli registers (i.e., fetch, catch, excite, inhibit)
· a set of local signal  and sync queues attached to active threads 
· a content addressable memory holding virtual code implications attached to threads, recorded transient synchronizations as well as sets of current weights and accept elements.
Let Model designate the state of the virtual machine. The machine itself functions as non deterministic learning automaton that operates on the constrained neural substrate represented by Model. Formally, it consists in repeating a sense-react-reflect cycle of embodied cognition defined by the following run procedure:
run(Model)
  loop sense(Model)
          react(Model)
          reflect(Model)
At the next level below, the sense procedure reflects the triggering of spike trains directed to sensory neurons. After possibly capturing an interrupt from sensors directed to a given active fiber, or stream,  it updates Model using a transition function input:
sense(Model)
  if   interrupt(Stream(Input))
 then  Model input(Model(Stream),Input)
The function input first terminates the interrupted stream by clearing all its registers and queues and then resets the clocks of the sensory threads associated with sensors. The react procedure consists of a loop calling on each active thread in any stream to first deduce a virtual machine instruction and then update Model using a transition function output  interpreting virtual machine instructions: 
react(Model)
  for each  Stream(Thread),T:Instruction,
  such that  ist(Model(Stream)(Thread),(clock(T), T:Instruction))
  do   Model  output(Model(Stream)(Thread), T:Instruction)

Finally, reflecting consists in a loop calling on each stream at sequence sumber I to reflect  the synchronization of a thread  with a stimulus 
reflect(Model)
  for each  Stream, I:Thread:Stimulus ,
  such that  ist(Model(Stream),(seq(I), I:Thread:Stimulus))
  do  report(Model(Stream), I:Thread:Stimulus)
The ist predicate (standing for “is true”) implements contextual deduction29. Clock register values T are used to deduce, for each active thread, the next instruction satisfying the guard. Whenever a transition initiated by a thread succeeds, the thread clock is advanced and the next instruction is deduced and executed, and whenever it fails, the current instruction is executed again i.e., the transition is attempted until it eventually succeeds. Altogether, this amounts to descending into an instruction tree, with its local clock time corresponding to the currently reached depth. As postulated independently3, there is no central clock, leading thus to the modeling of the brain as a massively asynchronous, parallel organ. 

2.1 Virtual machine definition
Operational Prolog specifications for the extended virtual machines and its instruction set. The definition of the basic threads implementing synaptic plasticity and memory are given at the end.
NB Additions and modifications from the previously published specifications24 are underlined.

Let Interrupt, the input sentence captured by sensors at successive run cycles, be represented by a list of the form 
[sensor(|X1),..sensor(|Xn)] .
An overall run is then defined as follows:

run(Model)  :- loop((sense(Model),react(Model),reflect(Model))). loop sense react reflect
sense(Model):- if(interrupt(Stream(Interrupt)),                        input interrupt
               then((remove(Model(Stream)(_),clock(|_)),          clear thread registers
                     remove(Model(Stream)(_),fetch(|_)),
                     remove(Model(Stream)(_),catch(|_)),
                     remove(Model(Stream)(_),excite(|_)),
                     remove(Model(Stream)(_),inhibit(|_)),
                     remove(Model(Stream)(_),signal(|_)),
                     remove(Model(Stream)(_),sync(|_)),
                     set(Model(Stream),seq(1)),              reset stream sequence register
                     remove(Model(Stream),_:_:_)))),       clear transient synchronizations
                     for_each(sensor(|X),                             for each sensor
                     such_that(member(sensor(|X),Interrupt)),
                     do(set(Model(Stream)(sense(|X)),clock(1))))))).  fire sense thread

react(Model)   :- for_each((Stream(Thread),T:Instruction),             for each thread
                  such_that(ist(Model(Stream)(Thread),
                                (clock(T),T:Instruction))),         retrieve instruction
                  do(Model(Stream)(Thread).(T:Instruction))).       execute instruction

reflect(Model) :- for_each((Stream,I:Thread:Stimulus),                for each stream
                  such_that(ist(Model(Stream,)
                                (seq(I),I:Thread:Stimulus))),    retrieve synchronization
                  do(Model(Stream).(I:Thread:Stimulus))).         report synchronization


2.2 Virtual machine instructions
Model(Stream)(P(|X)).(T:fire(Q(|Y))):-                     thread P(|X) fires thread Q(|Y)
      T1 is T+1,
      set(Model(Stream)(Q(|Y)),clock(1)),                             set Q(|Y) clock
      set(Model(Stream)(P(|X)),clock(T1)).                            set P(|X) clock
Model(Stream)(P(|X)).(T:end):-                                      thread P(|X) ends
      remove(Model(Stream)(P(|X)),clock(T)).                            remove clock
Model(Stream)(P(|X)).(T:send(Q(|Y))):-               thread P(|X) sends signal to thread Q(|Y)
      T1 is T+1,
      if_not(ist(Model(Stream)(Q(|Y)),clock(_)),                    receiver not active
      then((set(Model(Stream)(Q(|Y)),clock(1))))),                  set receiver clock
      if_not(ist(Model(Stream),weight(P(|X),Q(|Y))(W)),            no attached weight
      then(if(ist(Model(Stream),initial(P(|X),Q(|Y))(W)),             declared weight
           then(set(Model(Stream),weight(P(|X),Q(|Y))(W))),        set declared weight
           else(set(Model(Stream),weight(P(|X),Q(|Y))(0)))))),       set inhibit weight
      if_not(ist(Model(Stream)(P(|X)),signal(send(Q(|Y)))),            no send signal
      then(insert(Model(Stream)(P(|X)),signal(send(Q(|Y)))))),      queue send signal
      set(Model(Stream)(P(|X)),clock(T1)).                            set sender clock
Model(Stream)(Q(|Y)).(T:receive(P(|X))):-      thread Q(|Y) receives signal from thread P(|X)
      T1 is T+1,
      if(ist(Model(Stream)(P(|X)),signal(send(Q(|Y)))),                sender signal
      then(if((ist(Model(Stream),weight(P(|X),Q(|Y))(K)),K>0),           excite level
           then(set(Model(Stream)(Q(|Y)),clock(T1)))))).            set receiver clock
Model(Stream)(P(|X)).(T:merge(Q(|Y))):-               thread P(|X) merges with thread Q(|Y)
      T1 is T+1,
      if_not(ist(Model(Stream)(P(|X)),signal(merge(Q(|Y))))          no merge signal
      then(insert(Model(Stream)(P(|X)),signal(merge(Q(|Y)))))),    queue merge signal
      set(Model(Stream)(P(|X)),clock(T1)).                                 set clock
Model(Stream)(Q(|Y)).(T:join(P(|X))):-                     thread Q(|Y) joins thread P(|X)
      T1 is T+1,
      if(ist(Model(Stream)(P(|X)),signal(merge(Q(|Y)))),                merge signal
      then(set(Model(Stream)(Q(|Y)),clock(T1)))).                          set clock
Model(Stream)(P(|X)).(T:push(Q)):-                                   push stm record Q
      T1 is T+1,
      remove(Model(Stream)(stm(_)),path),                           remove path to stm
      remove(Model(Stream)(stm(_)),clock(_)),                        remove stm clock
      set(Model(Stream)(stm(Q)),clock(1)),                              set stm clock
      set(Model(Stream),weight(Q,stm(Q))(1)),                         set excite weight
      set(Model(Stream)(P(|X)),clock(T1)) .                                set clock
Model(Stream)(P(|X)).(T:pull(Q)) :-                                  pull stm record Q
      T1 is T+1,
      if(ist(Model(_)(stm(Q)),path),                                global path to stm
      then(ist(Model(Stream),seq(I)),                              get stream sequence
           insert(Model(Stream),I:P(|X):pull(Q)),                record synchronization
           set(Model(Stream)(P(|X)),clock(T1)))).                          set clock
Model(Stream)(lts(P(|X))).(T:store(P(|X))) :-                     store ltm record P(|X)
      T1 is T+1,
      if_not(ist(Model(Stream)(ltm(P(|X))),clock(_)),               ltm(P|X) not active
      then((set(Model(Stream)(ltm(P(|X))),clock(1)),                    set ltm clock
            if_not(ist(Model(Stream),weight(P(|X),ltm(P(|X)))(W)),   set inhibit weight
            then(set(Model(Stream),weight(P(|X),ltm(P(|X)))(0))))))),
      set(Model(Stream)(lts(P(|X))),clock(T1)).                         set lts clock


Model(Stream)(ltr(P(|X),Q(|Y),R(|Z))).(T:retrieve(P(|X))) :-          retrieve from ltm
      T1 is T+1,
      if(ist(Model(_)(ltm(P(|X))),path),                            global path to ltm
      then(ist(Model(Stream),seq(I)),                                   get sequence
           insert(Model(Stream),I:R(Z):retrieve(P(|X))),         record synchronization
           set(Model(Stream)(ltr(P(|X),Q(|Y),R(|Z))),clock(T1)))).       set ltr clock
Model(Stream)(P(Q)).(T:feed(_)) :-                                   feed path to P(Q)
      T1 is T+1,
      if((ist(Model(Stream),weight(Q,P(Q))(K)),K>0),                    excite weight
      then((if_not(ist(Model(Stream)(P(Q)),path),                           no path
            then(insert(Model(Stream)(P(Q)),path))),                     queue path
            set(Model(Stream)(P(Q)),clock(T1))))).                         set clock
Model(Stream)(Thread).(T:increment(weight(P(|X),Q(|Y)))) :-          increment weight
      T1 is T+1,
      if((ist(Model(Stream),weight(P(|X),Q(|Y))(W)),W<1),        weight below threshold
      then((W1 is W+1,                                               increment weight
            set(Model(Stream),weight(P(|X),Q(|Y))(W1))))),                set weight
      set(Model(Stream)(Thread),clock(T1)).                                set clock
Model(Stream)(Thread).(T:decrement(weight(P(|X),Q(|Y)))) :-          decrement weight
      T1 is T+1,
      if((ist(Model(Stream),weight(P(|X),Q(|Y))(W)),W>0),        weight above threshold
      then((W1 is W-1,                                               decrement weight
            set(Model(Stream),weight(P(|X),Q(|Y))(W1))))),                set weight
      set(Model(Stream)(Thread),clock(T1)).                                set clock
Model(Stream)(Thread).(T:choice(X)):-                           random selection in list X
      T1 is T+1,
      random(R,X),                                                   random choice R
      set(Model(Stream)(Thread),fetch(R)),                           set fetch stimulus
      write(T:fetch(R)),nl,                                  report asynchronous stimulus
      ist(Model(Stream),seq(I)),                                   get stream sequence
      insert(Model(Stream),I:Thread:fetch(R)),                   record synchronization
      set(Model(Stream)(Thread),clock(T1)).                                set clock
Model(Stream)(Thread).(T:test(Accept(|X))):-                        test accept element
      T1 is T+1,
      if(setof(Y,ist(Model(Stream),Accept(|Y)),List),           list of accepted elements
      then(if(member(X,List),                                         element X in list
           then(set(Model(Stream)(Thread),excite(Accept(|X))),       set excite stimulus
                write(T:excite(A(|X))),nl,                             report stimulus
                ist(Model(Stream),seq(I)),                         get stream sequence
                insert(Model(Stream),I:Thread:excite(A(|X))))),     record synchronization
           else(set(Model(Stream)(Thread),inhibit(Accept(|X))))     set inhibit stimulus
                write(T:inhibit(A(|X))),nl,                            report stimulus
                ist(Model(Stream),seq(I)),                         get stream sequence
                insert(Model(Stream),I:Thread:inhibit(A(|X)))))))),  record synchrone
      set(Model(Stream)(Thread),clock(T1)).                                set clock
Model(Stream)(Thread).(T:transmit(X|Y)):-             noisy transmission of X conditional to Y
      T1 is T+1,
      random(R,[X,Y]),                                          weighted random choice
      write(T:catch(R)),nl,                                  report asynchronous stimulus
      ist(Model(Stream),seq(I)),                                   get stream sequence
      insert(Model(Stream),I:Thread:catch(R)),                   record synchronization
      set(Model(Stream)(Thread),catch(R)),                           set catch stimulus
      set(Model(Stream)(Thread),clock(T1)).                                set clock 


Model(Stream)(Thread).(T:effector(P)):-                                virtual effector
      T1 is T+1,
      nl,write('>>'),write(effector(P)),nl,                            report effector
      ist(Model(Stream),seq(I)),                                   get stream sequence
      insert(Model(Stream),I:Thread:effector(P)),                record synchronization
      set(Model(Stream)(Thread),clock(T1)).                                set clock

Model(Stream).(I:Thread:Stimulus)) :- 
              nl,write(I:Thread:Stimulus),nl,                     report synchronization
              remove(Model(Stream),I:Thread:Stimulus),            clear synchronization
              I1 is I+1,                                       increment stream sequence
              set(Model(Stream),seq(I1))))).                      reset stream sequence

2.3 Basic threads implementing synaptic plasticity, memory and synchronization
threads(Model):
[thread(ltp(Q,R),                                                 long term potentiation
  [join(Q),
   increment(weight(Q,R))]),
 thread(ltd(Q,R),                                                  long term depression
  [join(Q),
   decrement(weight(Q,R))]),
 thread(lts(P),                                                      long term storage
  [store(P),
   increment(weight(P,ltm(P)))]),
 thread(ltr(P,Q,R),                                                 long term retrieval
  [retrieve(P),
   increment(weight(Q,R))]),
 thread(ltm(P),                                                      long term memory
  [feed(_)]),
 thread(stm(P),                                                      short term memory
  [feed(_)])].
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