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A Appendix: Method Details
Here we describe in greater detail each component of the methods used in the paper. This includes: building the
Revealed Dynamics Markov Model (RDMM), the proposed measures of uncertainty on that formalism, and further
details on our implementations of the existing measures of uncertainty/complexity from the literature. Later appendices
cover results from the individual data analyses.

A.1 The Revealed Dynamics Markov Model

The variant of Markov modeling utilized here is called a
Revealed Dynamics Markov Model (RDMM), and its rep-
resentation of time series datasets is straightforward. It
is similar to generating Markov chains from categorical
data such as gene sequences [1], computer security pro-
files [2], or protein configurations [3]. It is thus distinct
in both its construction and its useful applications from
hidden Markov models [4, 5, 6, 7] or other Markov chain
approaches [8, 9, 10]. Other network representations of
time-series data exist as well: recurrence networks [11],
networks of interacting dynamical units [12], networks of
temporal correlations of data features (e.g., cycles [13]),
and others (see [14] for a partial comparison). RDMMs
are a simple formalism, but they suit the current purpose
of describing the dynamics as observable from the data.

To build an RDMM first specify the number of bins B j

for each dimension j of the dataset to coarse-grain it into

n discrete states (some bins may be empty, so n ≤
∏

j B j).
These observed states become the nodes of the Markov
model. The frequency of each observed state transition
is recorded across the time series (or time window) and
these frequencies are normalized by the sum of the fre-
quencies to generate conditional probability distributions
for each node. That is, for each state we know the propor-
tions of transitions over next states, and these proportions
comprise the maximum likelihood estimates for the tran-
sition probabilities of the Markov model. After closing
any loose ends with a self-edge of weight 1, the result is
a Markov model of the observed transitions through the
dataset’s phase space. You can see a simplified example
of this process in Figure A.1.

The analyses presented in this paper use the simplest
binning technique: divide the observed data range into a
chosen number of equal-width bins. For a dataset Di with
entries xt (with 1 ≤ t ≤ T as the time index), the bin width
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W j for a number B j of bins is therefore determined by:

W j =
maxx Di −minx Di

B j − 1
. (1)

Note that we place xt in bin bk if its value is bk ≤ xt < bk+1
except for the maximum point which is included in the
highest bin.

b1

b2

b3

b4

b5

1 2 4 5

0.25

0.75

0.14
0.57

0.286

0.167

0.167

1.00.67

Counts

1

6

0

7

4

Example Time Series

Revealed Dynamics Markov Model

Figure A.1: Demonstration of applying the RDMM
method to a small sequence of data. Note that there are
no observations in bin 3, so no node is created for it. The
probabilities for each exit transition reflect the proportions
of bin-to-bin changes except for bin 5’s terminating self-
loop.

In our robustness testing we explore changes in each of
the uncertainty measures across a range of binning values
to establish each measure’s sensitivity to binning. There
is also a question about binning and cross-data normaliza-
tion. For example, when we use weather data from four
U.S. cities to demonstrate the technique, it is necessary to
used a shared binning and normalization. If we bin them
separately, then all cities’ data will get the same number of
bins, and (potentially) nodes, and (potentially) similar lev-
els of uncertainty. However, if use a shared binning, then
(for example) San Diego’s temperature range occupies a
small subset of the range of New York, which more accu-
rately reflects their relative phase space. As we will see
in that section, making a comparison of uncertainty on the
same scale requires shared binning and a shared normal-
ization — this consideration resurfaces when we analyze
RDMMs of sliding time windows in future work.

Although here we mainly apply the technique to sin-
gle instances of 1-variable time series data, the RDMM
approach naturally generalizes to multidimensional time-
synced data and to a simultaneous analysis of multiple tri-
als into a single RDMM. We demonstrate the multidimen-
sional application using exchange rates below. Combin-
ing multiple trials simply requires a shared binning and

combining the transition frequency counts all the trials be-
fore determining the conditional probability distributions
for each state.

When using one or multiple dimensions, equal-width
bins are the easiest and most intuitive; however, other bin-
ning approaches can been used as well: equal-contents
bins, agglomerative binning, clustering, etc. These other
binning approaches can soften the curse of dimensional-
ity because the RDMM only includes nodes for observed
combinations of binned values. In high-dimensional ap-
plications (outside the scope of this paper) we perform
adaptive binning to ensure sufficiently high confidence on
the distribution of transition probabilities of each node,
but this complication is unnecessary for our focus on test-
ing/comparing uncertainty measures here. regardless of
the binning method, nodes of the RDMM represent equiv-
alence classes of values (i.e., those data values within the
same bin) that define the states of the translated time se-
ries. This coarse-graining mimics a loss of resolution
and/or down-sampling that is commonly required of large-
scale analyses in the natural and life sciences (e.g. neuro-
logical or sensor web data).

In an RDMM, node si transitions to node s j with prob-
ability pi j. A specified set of nodes is written as N, and
the set of transition edges within N is denoted E. Because
Markov models are directed, reflexive networks, a fully
connected set of |N| = n nodes has n2 edges. No measure
here is sensitive to a node’s in-degree, so ki will be used
to refer solely to a node’s out-degree, and ki to the set of
nodes ∪s j∈S pi j > 0 (thus ki = |ki|). Self-loops count in the
out-degree of a node.

A.2 RDMM Measures of Dynamical Uncer-
tainty

This section presents multiple measures that quantify
the magnitude of dynamical uncertainty in an RDMM.
The Markov model representation enables techniques that
combine structural measures of weighted directed graphs
and probabilistic measures of stochastic processes. The
mathematics necessary for the measures here are rudimen-
tary: the technique takes common and well-understood
mathematical ingredients and blends them together in a
novel way to produce a new analytical window on system
dynamics.

The formal measures need to satisfy the following cri-
teria:

1. Uncertainty is maximized when all states are
equally likely to be transitioned into from every
state;

2. Uncertainty is minimized when every state has ex-
actly one exit transition (including reflexive transi-
tions); and
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3. The measure increases monotonically with in-
creases in uncertainty.

The first two conditions are specific to a Markov model
representation. The first one requires not just randomness,
but a uniform distribution across all sequential pairs of
data. The second condition requires not just a determin-
istic process, but one in which revisits to the same block
of the phase space always transition into the same block.
Thus using an RDMM one can compare the regularity of
different random or deterministic processes. That is, al-
though both normal and uniform noise are fully random
processes, given the same bounds an RDMM analysis will
rate the normal distribution as less uncertain.

From an information-content interpretation these mea-
sures are similar to that of Kolmogorov complexity in
which the “program language” is a Markov model, and
what these measures tell us is how complicated a model
has to be in order to capture the time series data. RDMMs
are intended to be descriptive (rather than predictive) mod-
els of the time series, so what is important is that the mea-
sures presented below track the uncertainty properties of
the data, rather than that the data-generating process actu-
ally be approximately Markovian. So the weather may be
perfectly predictable by some non-Markovian generative
weather model, and although the RDMM will never cap-
ture that model, these measures on the RDMM will tell us
how complicated that generative model needs to be. This
interpretation is not the only concept of time series uncer-
tainty, but it is a common one.

A.2.1 Entropy

Across the sciences, the default measure of uncertainty is
entropy, and more specifically Shannon entropy. Though
Shannon entropy is commonly applied to Markov pro-
cesses (including in Shannon’s original description [15]),
those Markov models are constructed in a distinct way
from the RDMMs employed here. For example, RDMMs
can be non-ergodic, may have anywhere between zero
and T source nodes, have multiple components, and dif-
fer in other ways because they are built/used in distinct
ways (especially when used to combine multiple times se-
ries into one RDMM). These differences notwithstanding,
the Shannon entropy measure is applicable and potentially
useful here upon appropriate reinterpretation.

Entropy can be applied to individual nodes or to the
whole system. For the local measure we calculate the en-
tropy of the edge weights of the existing out-going transi-
tions, but this doesn’t adjust for the number of possible
edges. For this application one must realize that miss-
ing links in the Markov model also provide information
about the uncertainty of the system. As such, the appro-
priate measure of uncertainty normalizes over all n pos-
sible connections. The maximum entropy value occurs
when a node’s exit transitions are all equally weighted at

pi j = 1/ki = 1/n. The equation for calculating normalized
local entropy for each node is

h(si) =
1

ln 1
n

∑
s j∈ki

pi j ln pi j . (2)

The local measure is useful in contexts where one is choos-
ing states or paths for future operation of the modeled sys-
tem, or in which system uncertainty should be weighted
by some node property (e.g. frequency, centrality, or a
context-specific state variable). The distribution of node-
specific entropy values can also provide another layer of
uncertainty assessment. We don’t use the local measure in
this paper

We also recommend taking the square root of the result
from the equation in order to scale up the values. Because
the measures (this one and all of the RDMM measures pre-
sented here) are normalized by n and the systems tend to
be sparse rather than dense, the measure values are often
very low. Taking the square root is a common approach
to better differentiate small values when measures range
from 0 to 1 because it is a monotonic transformation that
preserves the ordering and the normalized range. The root-
ing step is optional and additional, so throughout we define
the measures without that step and state it explicitly when
applied in our results section.

System entropy, H(N), is equal to the mean of the
node’s individual measures (before being square rooted),
but the system’s entropy can be calculated by either aver-
aging over all the individual node transition entropies or
by calculating the normalized entropy of all the edges di-
rectly.

H(S) =
1

n ln 1
n

∑
i∈E

pi log pi . (3)

The normalization factor matches a uniform complete
graph where each edge has probability 1/n. Because all
of the n2 edges in E have this weight, the summation re-
sults in n ln 1/n so the maximum value for H is 1. In a
minimum entropy system there are exactly n edges, each
with probability 1 (the rest are 0). ln 1 = 0, so H yields 0
for the minimum uncertainty case.

Note that the square root of the average local entropies
is not generally equal to the average of the squared local

entropies:
√∑

h(si)
n ,

∑√
h(si)
n . In our analyses below we

only report the square root of the global measures, but we
make use of the pure versions in discussing their relative
scaling properties.

A.2.2 Uniformity

As an alternative to entropy we can calculate the unifor-
mity of the nodes’ exit probabilities: a measure of the
edge weights’ divergence from a uniform distribution of
pi j = 1/ki = 1/n. The calculation used here is similar to
calculating the χ2 test statistic for a discrete uniform dis-
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tribution. The local uniformity of a node si is

U(si) = 1 −
n

2n − 2

∑
j∈ki

∣∣∣∣∣pi j −
1
n

∣∣∣∣∣q (4)

in which we set q = 1.
We can directly calculate the global uniformity that

compares deviations from a complete graph with uniform
edge weights. This calculation is also largely analogous
to the χ2 test statistic because direct global uniformity
is equivalent to the mean of the nodes’ local (pre-square
rooted) uniformities.

GU(S) = 1 −
1

2n − 2

∑
i, j∈S

∣∣∣∣∣pi j −
1
n

∣∣∣∣∣q . (5)

Both measures range within [0, 1] using the normalization
factor n

2n−2 and are subtracted from 1 so that zero devia-
tion from uniform random yields an uncertainty measure
of one. In the applications below we also take the square
root of uniformity when reporting the results for aesthetic
purposes (the numbers are often very small and this helps
differentiate them).

Two small technical notes: First, a measure called ‘ho-
mogeneity’ can be similarly built using uniformity (or en-
tropy) as the base by using 1

k instead of 1
n as the normaliza-

tion factor, but its interpretation is distinct from system un-
certainty and is not covered here. Second, the uniformity
measure here, though distinct in calculation from Laakso
& Taagepera’s measure of the effective number of political
parties (used below), fulfills all their desiderata for a gen-
eralized expression of the effective number of components
[16].

A.2.3 Turbulence

The crux of the turbulence measure of uncertainty is edge
density, specifically normalized weighted edge density.
Basic edge density is a common measure of networks and
the definition here is the same as the usual one: the per-
centage of possible transitions that are actually observed.
Here we normalize it to the RDMM case in which each
node must have at least one out-edge:

1
n2 |E| − 1

n

1 − 1
n

=
|E| − n
n2 − n

. (6)

Normalized edge density already acts as an unrefined mea-
sure of dynamical uncertainty under the following inter-
pretation: the fewer transition edges in the system, the
fewer possible paths through the system dynamics, and
hence the less dynamically uncertain it is. If each state can
transition into many others, then (like with the common
usage of ‘turbulent’), there is a great deal of uncertainty re-
garding how the system’s dynamics will unfold. The mea-
sure is unrefined because it treats all possible transitions

as equally likely; i.e., ignoring their relative probabilities.

Effective Degree. Transition probabilities clearly play
a role in determining dynamical uncertainty. For example,
if all but one of each state’s transitions have very small
probabilities, then that system is considerably less uncer-
tain than if all the transitions were equally probable. We
clearly must use the transition probabilities to determine a
weighted version of edge density.

To account for the probability distribution of exit tran-
sitions we cannot simply sum the edge weights in a
Markov model (as is typical in network theory; see [17]
or [18]). Instead we need a measure such that the mini-
mal value occurs when one edge dominates and the max-
imal value occurs when all the edge weights are equal.
One such measure is the inverse Simpson index [19].
We use the name “effective degree” to match Laakso &
Taagepera’s use of this measure for the effective number of
political parties using proportions of representatives [16].
The effective degree of state si equals

κi =
1∑

j∈ki
pi j

q . (7)

Below we explore different values of the parameter q keep-
ing in mind that the standard value is 2. If state si’s tran-
sitions all have the same probability, then the effective de-
gree is equal to the out-degree ki. As the proportions be-
come more focused on one edge, the effective degree con-
verges to 1. The variation in κi values across nodes tells
us whether some regions of the phase space are consid-
erably more uncertain than others, but here we focus on
system-wide assessments of uncertainty.

Effective Edge Density. To calculate the effective edge
density one can simply replace degree with effective de-
gree in the edge density measure. Our measure of tur-
bulence is the effective edge density normalized between
minimum effective edge density (still 1/n) and the maxi-
mum edge density, which now depends on the parameter
q. The resulting turbulence measure becomes

1
n2

∑
si∈S κi −

1
n(

1
n

)2−q
− 1

n

=

∑
si∈Sκi − n
nq − n

. (8)

Note that when applying effective edge density to a subset
of the system S′ (as one might do to test differences of un-
certainty for distinct behavioral regimes), one must set ki

in the effective degree calculations to sum over only those
transitions within S′ to ensure the normalization bounds
are satisfied.

When q > 2 a node’s effective out-degree is always
less than its raw out-degree, and so turbulence3 is always
less than or equal to normalized edge density. They are
equal if and only if q = 2 and all the exit transitions in-
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cident on each node are homogeneous (and in this case
turbulence2 is also equal to uniformity). The difference
between unweighted and weighted edges therefore corre-
sponds to an aggregate measure of transition probability
dispersion. We take the square root of the raw edge den-
sity and turbulence calculations in the empirical results
presented below, but for the rest of the methods section
we are using the pure measures.

A.2.4 Normalization and Minimum Sample Size

The normalization of the measures above are based on
maximum uncertainty occurring when the network is fully
connected with homogeneous weights, but for a Markov
model with n states, there would need to be at least T =

n2 + 1 data points in the time series to produce that output.
From this constraint we can formulate a general equation
for the maximum number of equal-width bins Bm capable
of supporting the maximum level of uncertainty:

Bm = b
2D√

T − 1 c , (9)

where D is again the number of dimensions (i.e., distinct
variables). For high-dimensional data the total number of
bins (voxels, cells) is the same, but then divided into each
dimension, so this severely limits the number of bins per
variable. Note that in many cases there will be (possibly
a large number of) empty bins, so by setting the binning
parameter using this general equation we are guaranteed
to reach at least the specified level for the actual number
of nodes. Of course it is also possible to adaptively bin the
data so that the number of nodes (instead of bins) satisfied
this criteria (we do this, but not here).

Yet, this does not sufficiently address the problem be-
cause even if the data were generated from a uniform ran-
dom distribution, we would not expect to see each of the n2

transitions exactly once before seeing any repeats. In order
for a system with n2 states to reveal itself as uniform ran-
dom we would need a large number of samples per state.
Although theoretically we would need an infinite number,
realistically we may be satisfied with 30n or 100n samples.
If η is the desired number of points per bin, then to satisfy
this criterion we would need to find a number of bins so
that each one had at least that number of samples in it.
That could be approximated with a number of equal width
bins BS = T/η, but it would be better to use equal-contents
bins set to η points per bin. This is a confidence level con-
sideration, and it pulls the number bins/samples supported
even lower in most cases. A more sophisticated approach
would start with smaller equal-contents bins (e.g., η/10)
and agglomerate them until they each have η points or the
multinomial confidence level at every node exceeds some
threshold; these methods are what we generally use, but it
is beyond the scope of this paper.

Another potential solution is to alter the uncertainty
definitions so that the uncertainty assessment is the best

possible approximation given the data available. So for
numbers of bins greater than Bm, it is possible to further
normalize the measures by the maximum achievable level
for a given T . That is not enough, as we said, because we
would expect to need multiple observations per state to see
the real distribution. If we need more bins than BS allows,
then we would need a different normalization factor to ap-
proximate how much uncertainty is added by having fewer
points than recommended. Although we do not present
these normalizations here, these worries are analogous to
worries of the other approaches to time series uncertainty
regarding minimum series length and window sizes. And
like those approaches, we first focus on presenting the
method and demonstrating its use and usefulness, and then
turn to the optimization of its meta-parameters in future
research.

A.2.5 RDMM Uncertainty Measure Scaling

The plots in Fig. A.2 show the pre-square root values of
each RDMM measure with increasing numbers of edges
per node. In the upper diagram the edge weights are ho-
mogeneous, and this shows the differences in scaling in
“ideal” circumstances. In this case we can see that normal-
ized edge density (black diagonal line), uniformity, and
turbulence2 are all equal and have a linear relationship be-
tween the number of edges per node and the uncertainty.
Entropy, turbulence0.5, and turbulence1 exaggerate the un-
certainty in sparse RDMMs while turbulence3 depresses
it.

The relationships in Fig. A.2 confirm that RDMM
measures of uncertainty satisfy the criteria laid out for
them. Although all variations are monotonic functions,
the differences in scaling alters their sensitivity across the
range of exit transition distributions. The bottom plot of
Fig. A.2 shows an example of the values of the measures
when the probability weights are heterogeneous. Impor-
tantly, uniformity and turbulence2 split away from normal-
ized edge density as the density of the RDMM increases
(this will be important in our empirical analyses later).

Interestingly, when q = 1 in the turbulence measure it
is undefined because the sum of the probabilities is always
exactly 1, and hence the minimum and maximum value
of the measure are both one. But as q → 1, turbulence
becomes equivalent to entropy. The reason for this equiv-
alence is that for small values of x, the Maclaurin series for
ln(1+ x) = x− x2

2 + x3

3 −
x4

4 + . . .; and so, when q = 1+10−10

the sum of the node probabilities differ slightly from be-
ing exactly 1, and when normalized the scaling of these
values is indistinguishable from the scaling of the natural
logarithm. For this reason we abandon further analyses of
turbulence1.
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Figure A.2: Scaling comparison of the RDMM measures
of uncertainty. Each one is normalized onto the [0, 1]
range, but has varying sensitivity to differences in the exit
probability distributions within that range. Comparison
made with 100 nodes and varying the number of edges
per node with uniform weight = 1/k (top), or assigning
random proportions to each edge (bottom). Increasing the
number of nodes increases the curvature (deviation away
from edge density) of all measures.

A.3 Comparison Measures
The measures offered above based on the RDMM
are compared to other measures of time series uncer-
tainty/complexity. The measures we consider here are all
calculated directly from the times series, although there
are others that use an intermediate model (e.g., neural net-
work, discrete wavelet transform). For now we exclude
comparisons to methods that use an intermediate model.
For a time series of length T (i.e., with T discrete observa-
tions regardless of the time scale) we calculate each of the
following measures.

Variance. The most basic measure of uncertainty for
time series is the variance. The sample variance ignores
the time ordering to measure the dispersion in the individ-
ual data points within a time-window (Eq 10). Although
large random changes will produce a large variance, so

will a monotonic increase in values, so variance does a
poor job in differentiating these cases.

1
T

T∑
t=1

(xt − x̄)2 (10)

Volatility. Volatility is a measure of variation common
in finance calculated from the log returns of the time se-
ries. First we generate the time series of returns from the
value data using Rt = ln xt

xt−1
. Then we find the mean log

return R̄ to calculate the volatility:

1
T − 1

T∑
t=2

(Rt − R̄)2 (11)

This measure is only defined when all values in the time
series are non-zero; a restriction that is safe for financial
instruments but not satisfied in general. It is therefore ex-
cluded from comparisons below as appropriate.

Jaggedness. In order to capture the variation between
adjacent increments of the time series we also calculate
the jaggedness (or roughness) of the time series. Although
high jaggedness means the time series is far from mono-
tonic behavior, and hence it is distinct from variance and
volatility, jaggedness is not a measure of uncertainty in
the sense that regular oscillatory patterns are likely more
jagged than random ones.

1
T − 1

T∑
t=2

|xt − xt−1| . (12)

Approximate Entropy. ApEn is a simplified and more
practical version of the Kolmogorov-Sinai measure of un-
certainty [20]. The method first uses overlapping windows
of length m = 2 and filtering level r = 0.2σ with σ the
time series’ standard deviation, to calculate for each win-
dow the proportion of the T − m + 1 windows that are
within distance r. ApEn equals the average over all win-
dows over these proportion logarithms, minus the sum of
repeating this process for m + 1 = 3. In addition to being
highly sensitive to its two parameters [21, 22], it also suf-
fers from problems of inconsistent relative measurements
[23] and bias. These limitations have led to refinements
and alternatives, but ApEn itself is still frequently used in
both comparisons and applications.

Sample Entropy. The most popular alternative to ApEn
is SampEn [23] which removes the auto-correlation bias
by excluding same-window comparison when computing
the proportions of within distance r windows. Again using
m = 2 and r = 0.2σ, let A and B be the number of segment
comparisons with distance less than r and lengths m + 1
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and m respectively, then SampEn equals

− ln
A
B
. (13)

Arctan Normalization. Each of the previous five mea-
sures is bounded below by zero, but not bounded above by
one. To ease comparison we further apply the function

2 arctan x
π

(14)

to normalize each measure value x to within the range
[0, 1]. Although this affects the values reported (e.g., in
comparison to previous studies), this does not effect the
relative values nor the correlations among the measures.

Permutation Entropy. Another measure that directly
assesses the uncertainty (regularity, chaos, randomness) of
time series data is based on the reoccurrence rates of short-
term regularities [24]. Permutation entropy (PermEn) cuts
the time series into m-tuples of chosen m and amount of
overlap; we chose m = 5 and an overlap of 4 (i.e., sliding
the window 1 step for each tuple). For every collection of
5 points, assign them a rank by value (ties are broken by
order of appearance). For each of the m! types of permu-
tations of order ranks πi, calculate its observed proportion

p(πi) =

T−m+1∑
j

δ jπi

T − m + 1
(15)

in which δ jπi is the Kronecker delta. One then calculates
the entropy from these proportions of permutations types,
which we normalize to achieve a value between 0 and 1:

−
1

ln m!

m!∑
i=1

p(πi) ln p(πi) (16)

Incremental Entropy Following refinements on permu-
tation entropy to handle the magnitudes of the changes
[25], [26] added the capability to account for both the sign
and amount of change. These two features are mapped
into a two-letter “words” for each incremental pair. The
incremental entropy (IncrEn) is calculated as the Shanon
entropy of these words. In this way IncrEn is sensitive to
patterns that ApEn, SampEn, and PermEn are not, includ-
ing periods of constant values. We apply this approach
using window length parameter m = 3, resolution (the
number of bins into which the magnitudes of changes are
encoded) R = 3, and normalize it by log(2R + 1)m.

Permutation Test. Similar to the permutation entropy,
the permutation test determines the proportions of each of

the m! possible kinds of permutations, but then calculates
the χ2 test statistic based on those proportions [27]. In this
case the regions are non-overlapping, and we again choose
m = 5. Normally the test statistic is used to calculate a p-
value for rejecting the null hypothesis that the series is dif-
ferent from random, but we instead normalize it to create
another measure of uncertainty in the [0, 1] range:

1 −
1

m! − 1

m!∑
i=1

(p(πi) − 1
m! )

2

1
m!

(17)

Runs Test. The runs test is a common method for
checking non-randomness in time-series data [28, 27, 29].
The first step establishes a threshold for classifying the
data into binary values; the mean and median of the time
series are common, so is whether sequential pairs are in-
creasing or decreasing — here we use the mean. This
translates the time series into a sequence of 0s and 1s ac-
cording to whether the data point xi is above or below x̄.
A contiguous sequence of 0s or 1s is called a ‘run’, and R
is the number of runs. R̄ is the number of runs expected
according to a binomial distribution for a given number of
values above (n0) and below (n1) the threshold:

R̄ =
2m0m1

m0 + m1
+ 1 . (18)

The expected standard deviation of the number of runs is

sR =

√
2m0m1(2m0m1 − m0 − m1)
(m0 + m1)2(m0 + m1 − 1)

, (19)

which allows one to compute the test statistic Z = (R −
R̄)/sR. Here we are interested in measures of levels of un-
certainty instead of hypothesis testing, so instead of deter-
mining the p-value for that test statistics, we convert it into
a measure that is maximal when the runs are most random:

Z = −

∣∣∣∣∣∣R − R̄
sR

∣∣∣∣∣∣ (20)

The Z score here has a maximum value of 0 and scales
monotonically negative for lower uncertainty. To enhance
its comparability to the other measures we further normal-
ize it using a normalized Softplus function,

ln(1 + eZ)
ln 2

, (21)

so that it is bound on [0, 1]. Thus the final measure will
report close to one if the data is assessed as random, and
close to zero for any pattern of non-random data.
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B Appendix: Generated Data and Analysis Details

In this appendix we provide additional details of both
the simulated data used to test the robustness of the uncer-
tainty measures and the results of those tests. These details
are provided to enhance transparency and reproducibility
of our analysis in light of the reality that the main article
is restricted in length and many readers do not need such
details to appreciate the key results.

B.1 Generated Data
We generated seven time series with T = 1200 points
using functions chosen to systematically explore the rel-
ative behaviors of our suite of measures. Later we explore
longer time series. Plots of the first 600 points of each
time series analyzed here are shown below to get a sense
of their uncertainty characteristics.

The first three generated time series are fully determin-
istic based on the sine wave at different frequencies, but
these frequency changes can dramatically effect the “per-
ceived” uncertainty according to people and the measures.
These functions are

1. a low frequency sine wave: sin t
4π ,

2. a basic sine wave: sin t
π
, and

3. a high frequency sine wave: sin 8t
π

.

For (3), by sampling at a rate higher than the Nyquist-
Shannon Theorem recommends we generate a highly os-
cillatory pattern that is erratic in the short-term, but regu-
larly repeating in the medium-term.

Using Nt to represent a single pull from a normal dis-
tribution with µ = 0 and σ = 0.4, the last four time series
incorporate this random data in different ways. As

4. random noise: Nt,

5. a random walk:
∑t

i=1Ni,

6. a noisy sine wave: sin t
π

+Nt, and

7. a randomly walking sine wave: sin t
π

+
∑t

i=1Ni.

Although all four are equally random in the sense that the
only nondeterministic element is the same series of ran-
dom numbers, they each follow different behaviors.

For each of these it is important to remember that in
constructing the RDMM the data’s y-values are binned
into 5-100 discrete values. So, for example, at very low
numbers of bins the sine part of the randomly walking sine
wave would not be detectable; and the noisy sine wave
may look nearly identical to the random noise. But at
higher resolutions the time series very closely resemble
the non discretized time series values.
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B.2 RDMMs of the Generated Data

Below you can see the revealed dynamics Markov
model produced from each of the simulated datasets us-
ing 35 bins per variable. Given the nature of these time
series datasets, each bin has at least one exemplar except
random noise (one empty bin, see Table B.1), and so the
RDMMs have as many nodes as there are possible bins
(35). This is not generally the case, and one advantage
the of RDMM approach applied to high-dimensional data
is that there are never more nodes than actually observed

combinations of values (which is always ≤ T ). The use
of binning further reduces the number of nodes by com-
bining nearby value combinations (coarse-graining) as a
kind of noise-reduction. This is appropriate for the use of
uncertainty measures here because the concept of uncer-
tainty we invoke is about system-wide patterns in the dy-
namics rather than measurements of short-term and small
scale difference (as is the case with permutation entropy,
for example).

Number of Bins
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Low Frequency Sine Wave 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Basic Sine Wave 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

High Frequency Sine Wave 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Noise 1 1 1 1 1 0.967 0.971 1 0.978 0.98 0.964 0.967 0.938 0.943 0.947 0.95 0.941 0.922 0.916 0.93

Random Walk 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.99
Noisy Sine Wave 1 1 1 1 1 1 1 1 1 0.98 0.982 0.983 0.969 0.971 0.933 0.963 0.953 0.944 0.937 0.95

Random Walking Sine Wave 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.988 1 1 0.99

Table B.1: Percent of bins used for each number of bins for each dataset.

The RDMM network diagrams below were generated
using our web-based visualization engine which includes
many options for displaying features of the RDMMs (node
measures, edge measures, group measures, structural mea-
sures, dynamical properties, graphlet distributions, etc. —
please contact the authors for more information). The lay-
out here is based on a spring-force-type algorithm ad-
justed by the endogenously discovered groups of states
with similar dynamical properties. The method for de-
termining the node communities (yellow convex hulls) is
based on the similarity of the distribution over future states
originating at each node (the details are beyond the scope
of this paper, but described in separate work). It is just

worth noting that they indicate groups of nodes with sim-
ilar transition patterns rather than specifically groups with
higher internal than external transition rates (it’s not any
standard community detection algorithm).

In these examples, the node colors range from light
blue to dark blue indicating the value of the centroid of
the points within each bin they represent. So the darkest
blue doesn’t represent the smallest data point value, it rep-
resents the mean of the datapoints in the lowest bin. Node
size reflects the number of observations within that bin.
Edge darkness reflects the number of observations of that
transition.
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Figure B.1: Low Frequency Sine Wave. The Markov model clearly reveals some obvious facts about this dynamical
pattern: (1) the highest and lowest bins have the greatest frequency, (2) transitions are quite local without large jumps,
and (3) the four group splits occur basically where expected. Because this is a one-step Markov model, given the value
of (say) 0.2, it could be increasing or decreasing, and so nearly all connections are two-way links. A two-step Markov
model would distinguish these dynamics and reveal the truly deterministic nature of the sequence, but can also explode
the number of nodes. It suffices that the network reveals a highly deterministic low level of uncertainty.
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Figure B.2: Basic Sine Wave. With 35 bins the basic sine wave does not show up as deterministic as one may expect.
This is because the bin boundaries intersect the wave form at different points in the cycle, creating many transition from
nodes in the middle values. For example, node 19 is in the left group and represents the value 0.11, and it is connected
to nodes representing 0.4, 0.45, −0.1, and −0.2 in each of the groups (starting in the left, going clockwise). It still has
the expected heavy bins at the minimum and maximum values and four basic groups. Clearly binning effects the details
of these edges, but the changes in the RDMM measures are never (here) drastic for small changes in binning. That said,
it is wise to utilize binning approaches that are optimized to datasets for the best results when using RDMMs.
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Figure B.3: High Frequency Sine Wave. Although this data is generated in a completely deterministic way, and the
oscillations clearly follow a regular pattern, their high rate of fluctuation and different values of changing direction
indicate, at least, a high level of activity. This is a case in which a Fourier transform would be the best model, but the
RDMM is still capable of capturing it as a largely deterministic system. The mean raw degree is 3.51 and the mean
effective degree is 2.83 which together indicate that most transitions are regularly occurring (again, due to where the
bin break the cycles). Changing the bins changes which nodes appear, and which edges go between them, but the
uncertainty measure values over exit transition distributions is largely preserved.
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Figure B.4: Random Noise. The Markov model for the normally distributed random noise sequence looks about as you
would expect: large numbers of edges to and from the nodes in the mid range (near zero) that have lots of observations
(large nodes) and few edges to and from the rare 3σ values. Because each point is a fresh random draw from the
distribution, there is no pattern to the sequence, and the states cannot be naturally organized into similarity groups.
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Figure B.5: Random Walk. The random walk shows a completely different, and quite coherent, behavior pattern even
though it is generated from the same sequence of random numbers as the noise dataset. Each random walk is different,
but in this case there is a clear, though not monotonic, overall trajectory of increasing value after an early dip (dark
to lighter, back to darker, then lighter and lighter). The plot of the first 600 steps above confirms this story for this
particular run. The size of each jump is small compared to the full range, so random walks tend to spend a lot of time
within the same bin and/or bouncing between bins. This pattern is also evident from the Markov diagram through the
clustered groups that clearly capture a sequence of punctuated equilibria as the dynamics unfold.
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Figure B.6: Noisy Basic Sine Wave. Although the specific edge distribution is different, and different nodes have
different frequencies of occurrence due to the underlying sine wave, the sine wave is not enough to produce a clear
signal through the noise. Using structural measures from network theory besides degree and density (such as graphlets)
can clearly distinguish the distributions, as can standard Markov probability estimates. Of course we already saw that
the random noise and noisy sine wave have similar, but noticeably different, uncertainty profiles.
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Figure B.7: Random Walking Sine Wave. This diagram looks unsurprisingly similar to the random walk, but with
a larger occurrence of reciprocal edges due to the underlying sine function. This particular walk also goes through
phases of punctuated equilibrium as it walks (because it is accumulating the same sequence of random numbers), but
they are perturbed by the sine wave enough that different bins are grouped together. Thus the RDMMs are clearly
distinguishable via their structural properties despite similar uncertainty profiles. One should note that although the
layout and data imply a progression of points, this Markov model is actually ergodic, and this accurately reflects the
standard feature of a random walk: although the pattern looks coherent, it is still possible to reach any state from any
state given enough time.
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B.3 Plots of Measure Values per Measure across Different Numbers of Bins

The following plots are useful for understanding how
each measure performs on the different time series; in par-
ticular, we want to judge the order of the uncertainly lev-
els, and the sensitivity of those levels to increased resolu-
tion. Note that although all the measures range from 0 to 1
(after normalization and squashing), the y-axes only cover
the occupied range in order to show more detail.

B.3.1 Non-RDMM Measures

Although the first eight measures (previous ones from the
literature) were not developed with binned data in mind,
binning the data in this way replicates the scenario of con-
verting an underlying analog signal into digital data of a
reduced resolution — a common feature of data for which
we want to assess the uncertainty. With 100 bins, the sig-
nals of these datasets are very close to their analog sig-
nal. We also applied the non-RDMM measures to the non-
binned data and those values are presented as dots at ∞
bins in the plots below. You can see that the measure val-
ues have converged to their non-binned values by 100 bins
(except for Increment Entropy).

The near constant levels for variance and jaggedness
for all datasets accurately reflects those features of the
data, but cannot be considered to reflect the uncertainly
levels both because they do not decrease with increasing
resolution and because they do not rank the datasets prop-
erly. Clearly the high frequency sine wave is the most
jagged, but just as clearly the random noise is more un-
certain/complex.

ApEn and SampEn have similar, but not identical, pro-
files for all time series. The deterministic sine waves are
rated low uncertainty, but so is the random walk. The two
time series with non-accumulated noise are rated as the
most uncertain. For both of these measures the reported
uncertainty levels are erratic across all the bin numbers
in a sawtooth pattern, but mostly level after 25 bins per
variable. The inability to detect the randomness of the
random walk (which is usually rated less uncertain than
the low-frequency sine wave) and the sawtooth sensitivity
to changes in resolution reduces their viability as robust
measures of uncertainty across reduced resolution. How-
ever, of the two, SampEn rates the deterministic series as
more equivalent, and except for that “mistake” regarding
the random walk, SampEn seems to do a better job at mea-
suring the uncertainty of these time series. This makes
sense in light of SampEn being a refinement of ApEn that
removes a bias.

Increment entropy performs inconsistently, showing
increasing uncertainty on some data and stable/decreasing
levels on others. It rates all the deterministic ones as
roughly equivalently uncertain at high resolutions, and all
the stochastic ones as higher, so that matches expectations.
Increment entropy is very sensitive to the magnitudes of

the changes between time steps, and so there is potentially
a large gap between the uncertainty measured at a 100 bin
resolution and the original data stream. For these datasets
the gap is small except for the low frequency sine wave.
This level of sensitivity to the resolution of the data may
be a benefit in some scenarios; after all, it was purport-
edly designed to overcome certain insensitivities in previ-
ous measures. Although I do not count it as a benefit here,
it is still the case that the ranking matches the relative un-
certainty of the datasets both at 100 bins and on the full
series. Although the ranking is correct after 40 bins, the
scores for both random walks consistently gain in uncer-
tainty with increasing resolution. Because this is counter
to what should be expected, it belies the claims that incre-
ment entropy is capturing the uncertainty or lack of infor-
mation in the time series. However, if we are considering
it as an alternative to the Permutation Entropy (discussed
next), then based on this test it might legitimately be an
improvement.

Permutation entropy and the permutation test mea-
sures are highly correlated on all datasets considered
(more below in the correlation analysis), but they yield dif-
ferent rankings for the uncertainty of the datasets. In both
cases the random walking sine wave is less uncertain than
the high frequency sine wave, but for permutation entropy
they converge, while for the permutation test the high fre-
quency since wave is consistently higher. This is the re-
sult of the permutations capturing the generally regular as-
pect of the sine wave on the short-term, but not detecting
the medium-term pattern of the high frequency sine wave.
One important difference between the two is that permu-
tation entropy uses overlapping time windows of length 5
(shift of 1), while the permutation test partitions the time
interval into windows of length 5. They also both assign
increasing ranks to ties based on the order of appearance,
so runs of equal numbers result in minimal uncertainty.
This plays out significantly in the binning results (espe-
cially the random walk) in which increasing bins reduces
the amount ties, which tends to increase the uncertainly
value reported. The values (and ranks) are mostly set-
tled by 50 bins, but the incorrect assignment of high un-
certainty to the deterministic sign wave counts strongly
against their candidacy.

The runs test results, when interpreted in its original
statistical form, is that only the random noise data stream
can be accepted as being random (i.e., with runs of values
above and below the mean being binomially distributed).
That seems true in the sense that all the others certainly
have more of a pattern with respect to being above or be-
low the mean value. All the other datasets’ results were
different enough from binomial that they become are ef-
fectively 0 after the squash function is applied (they are
Z-scores less than -10). This result is sufficient to stop

18



considering the runs test as a viable measure for time se-
ries uncertainty, although we present a few other results
below for thoroughness. This doesn’t count against the
runs test as a test for randomness though.

B.3.2 RDMM Measures.

Moving on to the six RDMM measures, there are some
clear similarities among them, but important differences as
well. First, recall that entropy and turbulence with q ≈ 1
are indistinguishable (so we omit the latter). Recall also
from Figure A.2 that both of these and turbulence with
q = 0.5 have concave curves with respect to increasing
uncertainty (even before applying the square root), mean-
ing they are more sensitive to variations in sparse Markov
models than variations in dense Markov models. For high
numbers of bins, all the RDMMs on this data will be
sparse. Unweighed edge density and uniformity have a lin-
ear relationship (before applying the square root). Turbu-
lence with q = 2 is close to uniformity, but slightly convex
on heterogeneous data, while turbulence with q = 3 is al-
ways convex, and therefore more sensitive to edge-weight
variations in dense graphs. None of these scaling patterns
are wrong/bad from purely theoretical considerations, so
here we are interested in assessing their usefulness.

When looking at the plots below we must also keep
in mind that all of the RDMM measures are normalized
by the maximum possible uncertainty for a given number
of bins, even if that is impossible for the number of data
points. For example, because the time series here all have
1200 points, they have 1199 intervals, and hence at most
1199 edges. That is true regardless of the number of bins,
which means that after b

√
1199c = 34 bins it is impossible

for the maximum level of uncertainty to be reached. As
the number of bins increases beyond this point, increas-
ing the number of bins will likely decrease the measure
value because it will likely produce an RDMM with more
nodes (though it may not if the added bins are empty).
So the measures desrease through this normalization in
combination with the exit transition distribution becom-
ing more focused (deterministic) through highesr resolu-
tion. For example, given enough data points (at minimum
T = B2 + 1, but many more are needed in expectation) the
normally distributed random noise dataset would eventu-
ally produce a fully connected RDMM (though not a uni-
form one). By these measures, there is less uncertainty in
a shorter random time series than a longer one. As de-
scribed in Section A.2.4, in the future we will evaluate the
use of measures normalized by the maximum possible un-
certainty for a given sample size, but for now we present
the results with the simple normalization.

Both entropy and turbulence with q = 0.5 have
(non-monotonically) decreasing curves for everything ex-
cept the two random walkers. The two random walking
datasets produce increasing entropy up to 50 bins, and af-
ter that the leveling off may be best explained by the lack

of data points just explained. The same is true for tur-
bulence with q = 0.5, but it steadily increases until 65
bins. Strangely, it is these two datasets for which increas-
ing the number of bins most clearly increases the informa-
tion about the system, and for these measures to so clearly
get that wrong bodes poorly for them as measures of time
series uncertainty. For the other datasets the uncertainty
assessments look correct, and these other datasets produce
more dense RDMMs, implying that these measures are in
fact overly sensitive to edge-weight variations in sparse
Markov models.

So the reason that uncertainty increases with increas-
ing bins (more refined information) according to these
measures on these datasets is because of the concavity of
their sensitivity response. All of the other datasets con-
tinue to visit the same set of nodes throughout the time se-
ries, but for the random walks there are parts of the range
(i.e. subset of RDMM nodes) that are very infrequently
visited. Although for a given number of bins the number
of potential nodes and the number of potential transitions
is the same for all measures and all datasets, the difference
in sensitivity produces these divergent results in Markov
models with highly heterogeneous densities.

Now considering the remaining RDMM measures (un-
weighted edge density, uniformity, and turbulence with
q = 2 or 3) they all have a similar overall pattern. The two
random walks appear as less uncertain than the sine waves
at very low number of bins, and although their assessment
declines, the sine waves’ uncertainty sharply declines so
that they are less uncertain after about 25 bins. This is
useful for determining the “sweet spot” for the number of
bins to use in empirical analyses (if not based on the cri-
teria outlined in Section A.2.4). For these datasets that
sweet spot appears to be around 35, and it turns out that
this is both (1) the minimum number of bins for the deter-
ministic datasets to be revealed as less uncertain than the
random ones and (2) the maximum number of bins for the
maximum possible uncertainty to be reached (actually 34).

It is also the case that at 35 bins the data is captured
with sufficient fidelity to track the tick-by-tick variations,
and so uniformity, edge density and turbulence with q = 2
are all in agreement on the order of uncertainty. When
q = 3, however, turbulence lacks sensitivity to variations
in the data; i.e., the value is so close to zero for all five
non-noise data streams that the differences cannot be reli-
ably discerned or relied upon. From this we can eliminate
turbulence with q = 3 as a reliable measure because it is
overly insensitive to important variations in the data.

Based on this first comparison we conclude that
among the non-RDMM measures, none of them match the
desiderata for a measurement of uncertainty, but ApEn and
SampEn are the best with respect to non-increasing uncer-
tainty and increment entropy does the best at getting the
order correct (after 40 bins). Uniformity and turbulence
with q = 2 come out as the overall winners, but only when
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the number of bins is greater than 35. This is also true
for edge density, but we can exclude that measure because
we know it is insensitive to rates of transitions; its simi-
larity here is largely due to the regular fluctuations of the

sine-wave based datasets.
Although these results favor two of the RDMM mea-

sures, these above considerations are not the only ones we
need to consider.
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B.4 Plots of Measure Values per Time Series across Different Numbers of Bins

The following plots show the same results as the pre-
vious ones, but this time aggregated by dataset instead of
by measure. As before, for each time series we generate
the RDMM and calculate the full suite of measures using
equal-width bins numbering from 5 to 100 in increments
of 5. We show correlation matrices across the measures for
each dataset below, but these figures are useful for com-
paring the level of uncertainty assessed by each measure
over the range of binning. For example, that turbulence
with q = 3 hugs the bottom of the plot while the permu-
tation test reports near-maximal uncertainty, even though
they are strongly correlated for much of the domain.

These plots indicate some obvious patterns in the com-
parative results. Sample entropy and approximate entropy
(green lines) typically have similar patterns with respect
to both the magnitude and sawtooth shape across the num-
ber of bins. Edge density (black line) is nearly monoton-
ically decreasing for all datasets. Uniformity (pink) and
turbulence with q = 2 and 3 (darker blues) are always less
than or equal to unweighted edge density, while RDMM

entropy (orange, equals turbulence with q = 1) and turbu-
lence with q = 0.5 (light blue) follow shared, distinct tra-
jectories. The permutation entropy and permutation test
(red lines) are typically closely linked, while increment
entropy (purple) follows its own course from dataset to
dataset.

Because these plots all range from 0 to 1 on the uncer-
tainly level, we can compare the measures to each other
and to their min and max values. For example, we can
see that on the random noise data, all the non-RDMM
measures rate the uncertainty as greater than 0.5, but the
RDMM measures all start high and drop off with increas-
ing bins. Again, this is partly because the measures are
normalized by the n2 possible edges, and with only 1200
points in these series the proportion of observed edges
shrinks after 35 bins. We make a similar comparison using
series with 10,001 data points (below) to demonstrate that
this feature is not a problem because the important thing is
the relative values, and these are preserved for longer time
series and different random seeds.
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B.5 Analysis of the Consistency of Measurements across Binnings

One desiderata for any measure of uncertainty is that
it should be consistent in the value it reports, and that in-
cludes robustness against different binnings of the same
data. Although we employed jaggedness as a measure of
uncertainty, it is actually a measure of the monotonicity,
and as such it is one method to assess the consistency of
the uncertainty values across different numbers of bins.
One issue with this approach is that it will give higher in-
consistency values to a sequence that bounces around its
mean than to one that is monotonically decreasing across
a large range, but we may consider the first case as more
consistent. For these reason we consider multiple features
when assessing a measure’s consistency, and this form of
consistency is only one consideration of a measures fit to
our desiderata. For each measure on each dataset, we first
normalize the result values onto the [0, 1] range so that the
relative consistency does not depend on the scale of the

uncertainty assessment. Then we calculate the jaggedness
of each measure’s normalized uncertainty value across the
binnings for each dataset.

Table B.2 shows the jaggedness across bin values for
each measure for each of the generated datasets. Due
to the preprocessing step, jaggedness will be zero here
if and only if the value is completely constant. If it is
perfectly monotonic (increasing or decreasing) the min-
imum value is 0.056, which appears in many places in
the table. Only variance is perfectly monotonic for every
dataset, but there are several measures that are highly non-
monotonically varying with increasing bins. Specifically,
ApEn and SampEn are highly inconsistent across binnings
(we already mentioned the sawtooth pattern), and Permu-
tation Entropy is highly inconsistent only on the high fre-
quency sine wave.

Low High Random
Freq Basic Freq Random Random Noisy Walking
Sine Sine Sine Noise Walk Sine Sine

Variance 0.056 0.056 0.056 0.056 0.056 0.056 0.056
Jaggedness 0.056 0.056 0.059 0.058 0.210 0.065 0.091

Approximate Entropy 0.113 0.076 0.077 0.139 0.164 0.097 0.165
Sample Entropy 0.122 0.122 0.102 0.105 0.174 0.121 0.140

Increment Entropy 0.080 0.093 0.148 0.062 0.056 0.061 0.057
Permutation Entropy 0.095 0.091 0.159 0.057 0.056 0.060 0.074

Permutation Test 0.073 0.063 0.135 0.061 0.056 0.058 0.070
Entropy 0.115 0.075 0.060 0.057 0.060 0.067 0.073

Uniformity 0.064 0.057 0.056 0.056 0.089 0.056 0.083
Edge Density 0.056 0.056 0.056 0.056 0.056 0.056 0.059

Turbulence q=0.5 0.164 0.107 0.070 0.068 0.062 0.088 0.071
Turbulence q=2 0.072 0.057 0.056 0.056 0.160 0.056 0.080
Turbulence q=3 0.058 0.056 0.056 0.056 0.065 0.056 0.061

Table B.2: Non-monotonicity for each of the uncertainty measures across bin values for each of the datasets.

To assess the relative consistency of the monotonic-
ity we calculate the mean and variance of these jagged-
ness values across the datasets. The comparative results
are shown as shades in Figure B.8 including the rank of
each measure. In terms of having consistent evaluations of
uncertainty across binnings, the RDMM measures on av-
erage out-perform the previous measures, but not entirely.
Turbulence with q = 0.5 is very erratic, and turbulence
with q = 2 is also overly sensitive to binning on some
datasets.

One worry about high consistency is a lack of sensitiv-

ity, and so the monotonicity of turbulence3, variance, uni-
formity, and edge density here are due to their lack of sen-
sitivity to the data rather than their consistent sensitivity to
the data. Edge density very consistently decreases exactly
because it is not sensitive to the edge weights, which can
change considerably for different binnings. When it comes
to the consistency of the measures across binnings bal-
anced with sufficient sensitivity, RDMM entropy is a top
contender, but many measures fall into the same middle-
ground.
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Figure B.8: Mean and variance of the jaggedness of the normalized measure values from the seven simulated datasets.
Lighter shade indicate lower values and overlay text is the rank. From this we an see the relative consistency of each
measure of uncertainty in terms of the consistency of increasing/decreasing values with increasing resolution.
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B.6 Effects of Reversing the Data on Measure Values

One may have the intuition that reversing the time se-
ries should not effect our assessment of its uncertainty. Af-
ter all, the set and relative sequence of the numbers are
the same. We contend that the order should matter, but
how much it matters depends on the nature of the time se-
ries. Imagine a cat leaping onto a branch: the trajectory
of the jump informs us the landing spot, but the landing
spot informs us much less about the trajectory. Or you can
think of crescendos in music: the rising volume and ca-
dence lead up to an anticipated climax, but if listening to
it backwards, the climax would not leave one expecting a
diminuendo. Hence for many time series, running the data
backwards should produce a different level of uncertainty
than running it forward because the information content
(and hence the uncertainty about what is going to happen
next) are different.

Most of the previous measures of time series uncer-
tainty are symmetric by design, and so they cannot re-
flect any predictability differences based on the order of
the time series. The exception being that permutation
entropy can produce different values for the reverse data
when there are ties in the data. This is because ties in
values are (typically) assigned ascending ranks by the or-
der of appearance. However, this is a known flaw of that
measure [30], rather than a feature. The permutation test
has the same issue, and for this reason is generally rec-
ommended for real-valued data with few-to-no tied values
[31]. In our case, all the non-RDMM measures yield the
same values for the reversed non-binned data, but binning
the data generates ties, which is reflected in the differences
between the directions of these permutation-based mea-
sures presented in table B.3.

The construction of the Markov model, however, is in-
herently sensitive to the order of the data. This can be
clearly seen in the following simplified example.

1→ 1→ 2→ 2→ 3→ 3→ 4→ 5→ 5→ 5

This series produces distinct Markov models when en-
coded forward and backward as can be seen in Fig. B.9.
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Figure B.9: Example Markov model demonstrating the
difference in edge weights between running the data for-
ward (top) and in reverse (bottom).

Ignoring the direction of the arrows, you can see
the distribution of edge weights is actually quite simi-
lar. When encoding a single time series, the difference in
the network-wide distribution of edge weights is tightly
constrained even though individual nodes’ exit transi-
tions change dramatically (e.g., the first and last node in
Fig. B.9). When encoding multiple times series into a sin-
gle RDMM the reversal can have a much larger effect, but
we do not cover that kind of application in this paper. The
limited effect can also be seen in the small differences re-
ported by each measure in Table B.3.

Low High Random
Freq Basic Freq Random Random Noisy Walking
Sine Sine Sine Noise Walk Sine Sine

Variance 0 0 0 0 0 0 0
Jaggedness 0 0 0 0 0 0 0

Approximate Entropy 0 0 0 0 0 0 0
Sample Entropy 0 0 0 0 0 0 0

Increment Entropy 0 0 0 0 0 0 0
Permutation Entropy 0.00569 0.000886 0.000894 0.001953 0.00926 0.004537 0.006696

Permutation Test 0.00892 0.00565 0.000777 0.00069 0.014063 0.004245 0.019526
Runs Test 0 0 0 0 0 0 0

Entropy 0.003318 0.001089 0.000707 0.002521 0.001951 0.002289 0.001031
Uniformity 0.000067 0.000222 0.000278 0.003094 0.000243 0.0019 0.000205

Edge Density 0 0 0 0 0 0 0
Turbulence q=0.5 0.00339 0.00091 0.000841 0.002709 0.002353 0.001752 0.001197

Turbulence q=2 0.002307 0.001191 0.000588 0.003084 0.000939 0.002606 0.001088
Turbulence q=3 0.001084 0.000838 0.000476 0.004193 0.000391 0.003038 0.000808

Table B.3: Mean absolute value of the difference between running each measure forward and backward through the data
across all binnings. Permutation-based measures become non-symmetric because of the ties introduced by binning.
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Edge density is sensitive to the binning, but not to
the edge weights, so even though it is measured on the
RDMM, it is still symmetric going forward and backward.
One would expect to see a bigger difference on the random

walk datasets than the sine wave or noisy datasets because
the walks “tell a different story” in reverse. However, at
least on these samples, there is no coherent pattern in the
differences.

B.7 Correlations of Measures Values

In this section we present the pairwise correlation ma-
trices across all measures on each of the seven generated
datasets as array plots. By examining these correlations
we can identify groups/classes of measures with similar
scaling properties (i.e., changes in values with changes in
binning). Interestingly, the sets of correlated measures are
dependent on the dataset; measures that are strongly cor-
related on one dataset may be strongly anticorrelated on
another, which undermines at least one of those measure’s
claim to be measuring uncertainty.

In a comparison of this sort, there is no “ground truth”
to compare against: no “true” level of uncertainty that we
can match each measure to. However, for the binning test
we contend that the edge density measure possesses the
desired scaling properties across bins: nearly monotoni-
cally decreasing with increasing numbers of bins, leveling
off at high numbers of bins (saturation), and matching in-
tuitive comparative levels among the simulated datasets.
Because edge density is not sensitive to the edge weights
it is not viable as a measure, and so we are not looking for
a measure that is the same as edge density, but being pos-
itively correlated with edge density is a sign of capturing
appropriate scaling patterns. However, a measure that is
too strongly correlated with edge density reveals that it is
also insufficiently sensitive to differences in the weights.

Correlations are overall lower on the low frequency
sine wave than other data; however, all the RDMM mea-
sures are largely in agreement and so is ApEn. This ma-
trix also reveals the lack of general agreement or disagree-
ment among the non-RDMM measures on this dataset, al-
though they are more correlated than anticorrelated (ex-
cepting ApEn and increment entropy). The basic and high
frequency since waves show clear (but distinct) splits in
the measures. For the basic sine wave the RDMM mea-
sures are together with ApEN and SampEn, but for for the
high frequency sine wave the two permutation-based mea-
sures are also in agreement. In both cases increment en-
tropy is less consistently anticorrelated than the others, so
on deterministic data with few short-term ties all the real
measures except increment entropy gets it right.

For both the random noise and noisy sine wave, all the
RDMM measures are grouped together against all the non-
RDMM measures. Although the RDMM measures report
very different levels of uncertainty on these datasets, they

all start high and decrease with increasing binning. The
non-RDMM measures start high, increase up to around 25
bins, then level off. Although consecutive pairs, and even
small segments, of numbers are completely random (and
so we can expect high uncertainty evaluates from mea-
sures that look only at those), the overall behavior of these
data streams is consistent. As we get more refined data
we can say with greater confidence what distribution they
are derived from. With these considerations in mind the
uncertainty of the process should decrease with increasing
resolution and that all the RDMM measures get this right.

The correlations among the two random walk datasets
are a bit messier, but also reveal a somewhat similar pat-
terns to each other. In both cases the edge density is
correlated with uniformity and turbulence3, anticorrelated
with entropy and turbulence0.5, and weakly correlated with
turbulence2. In fact, uniformity itself is more strongly cor-
related with turbulence2 than edge density. On the ran-
dom walk, ApEN is also correlated strongly with unifor-
mity, but not on the random walking sine wave. On these
datasets the increment and permutation-based measures
are increasing with increasing resolution, and so both en-
tropy and turbulence0.5 follow that pattern. We have al-
ready explained above how being overly sensitive to edge
weights in sparse Markov models yields this result for en-
tropy and turbulence here. For the other measures it has
more to do with how binning the data acts like a course-
graining filter for the local noise; increased resolution re-
veals more of the tiny “vibrations” in the data to which
these measures are sensitive (which also makes them cor-
related to jaggedness on several datasets).

So again, on the correlation analysis, uniformity
comes out ahead of all the measures (both RDMM and
non-RDMM) in its consistency of correlation partners
across the datasets. Specifically it is consistently corre-
lated with edge density, but also consistently teams up with
turbulence2 or turbulence3. Unsurprisingly, APEn and
SampEn are tightly correlated, as well as the pairs of vari-
ance & jaggedness and the two permutation-based mea-
sures. Incremental entropy does its own thing, sometimes
correlated variance and jaggedness, sometimes only with
permutation-based measures, sometimes with all non-
RDMM measures.
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B.8 Robustness across Multiple Long Time Series

The generated time series above were limited to 1200
points because this reflects a constraint of several em-
pirical datasets and because it suffices to demonstrate
the core points. Although by no means a large num-
ber, it does exceed the recommended minimum points
for the previous measures of uncertainty [32, 33, 34]. In
this section we demonstrate that the features described
above robustly hold for longer time series and other
stochastic parameters. For all the deterministic time se-
ries, adding more points does not change the Markov
model, and every “run” is identical. So here we focus
on the four stochastic time series. Recall that each of
the four stochastic time series utilize the same sequence
of draws from a random distribution. First we describe
the robustness results in terms of the same Normal dis-
tribution with mean 0 and standard deviation 0.4 used
above. We also expand on this by comparing the ef-
fects on measures of uncertainty of wider standard devi-
ations σ = {0.4, 0.8, 1.2} as well as a Uniform distribution
with endpoints at {(−0.4, 0.4), (−0.8, 0.8), (−1.2, 1.2)} (see
Fig. B.10).
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Figure B.10: Plots showing the PDFs of the six distribu-
tions used in the tests described in this section.

First we created 10,001 points for each of 100 distinct
realizations of the random noise (enough to potentially
achieve maximum uncertainty at 100 bins). Then, as be-
fore, we used that sequence of random numbers to build:
the noise sequence (the numbers themselves), the random
walk (accumulating the numbers in sequence), the noisy
sine wave (adding the number to each value of the basic
sine function), and the walking sine wave (accumulating
the previous values at each time step). In this way we can

separate both the role of the random pull among the 100
time series and the role of the sequence’s pattern.

Up to this point we have already eliminated several
RDMM measures as redundant or inferior, so in this anal-
ysis we focus on entropy, uniformity, and turbulence2. We
also include the most common and demonstrably useful
non-RDMM measures: sample entropy and permutation
entropy. For each stochastic time series we have a set
of six plots showing the response to binning for each of
the noise distributions. In addition, we show the measure
values (including edge density) for each time series and
distribution at 50 bins in a separate set of plots for easier
comparison.

From the plots below you can see that the assess-
ment of the uncertainty of each measure is distinct across
datasets, but consistent on the same type of dynamical pat-
tern. This is also true for sample entropy and permutation
entropy. The random walkers are similar to each other,
and the noisy datasets are similar to each other, but the
two sets are distinguishable. For example, the walking
sine wave is slightly more uncertain and less consistent in
its uncertainty measurements than the random walker (al-
though it may be difficult to tell them apart from a single
noisy parameter, their patterns across noise dispersions is
clearly distinguishable). The point of this section is only
to show that the results above do not depend on the time
series length nor on any particular draw from the random
distribution. That is why we focused on relative compar-
isons instead of specific numbers: the relative patterns are
consistent across datasets of similar dynamical types even
if there is variation in the specific values.

First we examine all the plots for the random noise (in
the first set below). The first and most salient observation
is that all the measures are more precise on the uniform
noise than the normally distributed noise. This is because
a Normal distribution has the possibility to produce out-
liers, and these outliers greatly effect both (1) this kind of
regular-interval binning and (2) the appearance of obser-
vations unique to a particular time series. The second ob-
servation is that both permutation entropy and sample en-
tropy report nearly identical values across both the distri-
bution type and width; i.e., neither measure is sensitive to
either change (on the noise series). Contrarily, the RDMM
measures are all much greater for the uniform noise than
the normal noise. This is because the normal distribution
produces a pattern in the exit transitions of the induced
Markov model, with more edges and stronger weights in
the center and fewer/weaker at the periphery, but the uni-
form distribution (obviously) produces a more uniform
Markov model. This is exactly the sense of uncertainty
we are aiming to measure with this technique: the exis-
tence of a pattern in the time series that yields informa-
tion about the generating mechanism (even when that
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generating mechanisms is merely a stochastic process).
The ability of of the RDMM measures, and the inabil-
ity of the non-RDMM measures, to capture this differ-
ence is a solid win for the proposed technique.

This difference shows up in different ways for the other
generated datasets. For simple noise, the normalization
of the range to the observed data diffuses the effect that
the distribution’s dispersion parameter could have on the
RDMM measures. For example, at 50 bins edge density
reaches nearly 1 for all domain widths of the uniform dis-
tribution because 10,001 points is enough to reveal nearly
all possible transitions among 50 nodes regardless of the
values of the PDF’s domain — and even turbulence2 has a
value near 0.9. But on the noisy sine wave there is trade-
off between the underlying sine pattern and the noise, so
a wider noise dispersion creates a more noticeable (and
measurable) effect compared to the underlying sine wave.
Here again, although the normal distribution has a wider
domain, the uniform distribution yields greater uncertainty
for the RDMM measures, but not so for sample and per-
mutation entropy.

For the random walk, none of the measures report sys-
temically higher or lower uncertainty values across in-
creasing parameter values or between normal and uniform
distributions (although the edge density and uniformity re-
sults are more precise for the uniform distribution). Be-
cause there is no underlying pattern in the random walk,
the resulting overall pattern of accumulated noise doesn’t
vary (systematically) depending on the type of noise (af-
ter normalization). Random walks are random walks, and
their characteristic behavior does not depend on the par-
ticular kind of (symmetric) random noise distribution.

The random walking sine wave provides an interest-
ing mix of the random walk and noisy sine wave. In this
case increasing the dispersion of the noise has the effect
of reducing the uncertainty for both normal and uniform
distributions. Recall from the time series figure above (of
one example of the random walking sine wave) that the

effect of the normal[0,0.4] is small compared to the sine
wave, so there is a visible sine wave moving up and down
based on the bias provided by accumulating the noise. The
larger the noise, the less it looks like a sine wave and the
more it looks like a random walk, and random walks have
lower uncertainty than noisy sine waves, so the net effect
of increased noise is reduced uncertainty.

B.8.1 Value Depression through Normalization.

One feature worth mentioning is that, since we chose
enough points to reach maximum uncertainty at 100 bins,
the values here are less depressed at higher bins for this
reason. Compared to the results of single runs seen above
we can indeed see that the uncertainty values are greater
at the higher end of the bin spectrum in most cases (i.e.,
less depression where more points are needed), but the ef-
fect is small enough that it doesn’t affect the ranking of the
measures.

B.8.2 Unbinned non-RDMM measures.

We can also do a similar comparison using the unbinned
versions of the non-RDMM measures. Sample Entropy
is already convergent to its unbinned value by 50 bins on
these runs, so it is unaffected. Permutation quickly con-
verges on the noise (total uncertainty) and noisy sine wave
(lesser uncertainty), but not on the random walks. On the
noisy sine wave and walking sine wave, the greater the
width of the distribution, the greater the effect in compar-
ison to the sine wave’s underlying pattern, and thus the
greater the uncertainty (of this type). On the random walk,
permutation entropy is less than the random noise, but it
is unaffected by the parameter of the stochastic process.
As per usual, it often takes many bins for the permuta-
tion entropy to converge to its unbinned values because
the presence of ties deflates the reported uncertainty, but
on the noise and noisy sine wave datasets the permutation
entropy plateaus around 50 bins.
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sample entropy permutation entropy entropy uniformity turbulence q=2
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sample entropy permutation entropy entropy uniformity turbulence q=2
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sample entropy permutation entropy entropy uniformity turbulence q=2
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B.9 Summary of Simulated Data Analysis

Although turbulence2 comes out ahead overall on our
tests, it is not a Pareto superior option. The low levels
of uncertainty reported for the random walks, especially
at small numbers of bins, implies that this measure (as
well as edge density and turbulence2 or turbulence3) can-
not pick up on the randomness of the walk. In truth, what
this reveals is that this kind of accumulative randomness
produces stepwise changes that are small compared to the
overall changes, and when considered as a Markov pro-
cess the next value is well predicted by the previous value.
Entropy and turbulence0.5 get this wrong because increas-
ing the number of bins increases the number of edges cut-
ting across each bin (many of which were previous lumped
together as a self-transitions), and these measures are ex-
tra sensitive to changes in the distribution of edge weights
when the number of edges is small.

Another worry about the RDMM measures is that get-
ting more data can increase the measured uncertainty lev-
els. Consider the random noise dataset: with 1200 data
point and 34 bins, the uniformity is just below 0.35. We
know that the unweighted edge density will go to 1 as the
length of the time series grows. The noise is normally
distributed, so even at the limit we know that the distribu-
tion among bin-to-bin transitions would never be uniform,
but uniformity (and turbulence) would likely increase if
we kept the same bins and doubled the length of the se-
ries...though only up to the point at which the model cap-
tures the uncertainty of a normal (versus uniform) distri-
bution.

One intuition is that, as the number of data points in-
creases, our information about the system increases, and
so all else being equal our uncertainty regarding the sys-
tem should go down (not up). However, a longer ran-
dom sequence contains more idiosyncratic transitions, so
it would require more information to recreate it (in the
sense of Kolmogorov complexity), and that is why un-
certainty goes up with more data in this case. Increasing
uncertainty with increasing bins is a separate issue, even

though they are both “getting more information about the
system”, the former is getting more data points while the
latter is getting more detailed information on the same data
points. So uncertainty can certainly go up in the former
case, but it should typically decrease in the latter case (ex-
cepting some spacial cases where specific value bound-
aries inordinately increase cross-boundary transitions).

Another way to think of this is that the RDMM method
only captures/measures the data actually seen and does not
try to generalize to the generating process. That feature is
by design. For coherent patterns, getting more data will
reveal rare events and strengthen (in terms of greater prob-
abilities) the core behaviors. With more data we become
more confident that the Markov model captures the behav-
ior, and uncertainty goes down as edge weights become fo-
cused on those repeated transitions. However, in the case
of random noise, getting more data simply increases our
certainty that the signal is noise. With a short noisy se-
quence there may be an underlying pattern that cannot be
discerned, but the longer the sequence gets, the more un-
certain we are (and the more confident we are that we are
uncertain) about the reproducibility/predictability of that
sequence.

Although we tested the sensitivity of the measures be-
tween 5−100 bins, we have also shown that the maximum
number of bins that can support the maximum level of un-
certainty on one-dimensional data is Bm = b

2√
T − 1 c. For

this simulated data that number is 34, but we also tested the
robustness and correlation claims on multiple, longer time
series of 10,0001 points and found consistent results when
Bm = 100. This robustness is a desirable feature as long as
it doesn’t reflect a lack of sensitivity. The technique being
proposed never breaks with too little or too much data, but
the amount of data regulates how successfully the model
captures the data and how reliable the measures are. Fu-
ture work will pair the uncertainty assessments with confi-
dence levels of the uncertainty that reflect both the number
and distribution of the transition observations.
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C Weather Data and Analysis Details

Weather prediction is clearly important, and hidden
Markov models (HMM) have long been useful for this task
[35, 36, 37, 38]. The point of the HMM approach is that
there is an underlying (hidden) causal mechanism with pa-
rameters that can be reverse-engineered from the observed
data and then used to make near-term predictions. Our
technique is not being proposed for making predictions,
it instead describes the observed dynamics in a way that
facilitates new measures of system uncertainty. As men-
tioned above, one way to think about it is that uncertainty
measures on the RDMM inform us of how complicated
the HMM (or other model) would need to be to capture
the dynamics in a certain weather system.

We use our RDMM technique to analyze daily precip-
itation and temperature data for four US cities with proto-
typical relative levels of uncertainty:

• New York City Central Park, NY

• San Diego International Airport, CA

• Phoenix Airport, AZ

• Miami Beach, FL

The data comes from the NOAA Climate Data Online:
Dataset Discovery page [39]. We requested data on tem-
perature and precipitation from Jan 1, 2010 to Dec 31,
2016 for a total length of 2,557 days. Because “aver-
age temperature” and “observation temperature” were not

available for half of this date range, our temperature time
series is the mean of the minimum and maximum for each
day. In both time series there are a few small gaps (1-3
days of missing data) which we filled via linear interpola-
tion.

These cities were chosen because of their distinct
mixes of temperature and precipitation patterns. For those
not familiar with the weather of these cities, you can see
from the plots below that New York and Phoenix have sim-
ilar temperature variations, but very different precipitation
levels. Miami and and San Diego likewise have similar
temperatures and very different rain patterns. However
San Diego and Phoenix have similar rain patterns, as do
New York and Miami. Thus these four cities combined
occupy each square of a 2 × 2 grid of low and high tem-
perature fluctuations and precipitation amounts.

Because of these relationships we can establish an
intuitive ranking of the uncertainty of weather in these
cities. In order from most predictable to most uncertain
are (1) San Diego, (2) Phoenix/Miami, and (3) New York.
Phoenix and Miami tie for second in our intuitive ranking
because the two cities are trading off variation in one time
series with the other; the ranking will depend on whether
precipitation or temperature is more uncertain. Below we
test how each measure performs in matching our expec-
tation, as well as sensitivity to binning. Note also that
volatility has been included in these analyses.
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C.1 Shared Binning
The binning here is done differently than before. Because
we want to compare the uncertainty of the cities’ weather
on equal grounds, we use a shared binning across all four
cities. So, even though the temperature in San Diego never
gets above 90◦F or below 40◦F, it is still binned using the
same range of values as New York and Phoenix. This will
naturally create fewer filled bins for the San Diego dataset,
but this alone does not automatically translate into less un-
certainty for RDMMs. In order to make the different time
series comparable with the shared binning they must be
normalized by a shared value as well; we naturally choose
the number of bins B as the common normalization factor.

Note that this shared binning and normalization does
not require that the RDMM contain nodes for the empty
bins. We still gain the computational speed and memory
advantages from excluding empty bins from the model and
analysis. The normalization step operates on the measure-
ment values output by applying the uncertainty measures
equations on the abridged RDMM.

For RDMM entropy the shared normalization is a
straightforward replacement of n with B. The re-
normalization of edge density and turbulence to shared
bins requires changing 1/n in the above formations to
n/B2. Thus generalized turbulence becomes

1
B2

∑
si
κi −

n
B2(

n
B2

)2−q
− n

B2

(22)

to capture the fact that the minimum value is still achieved
when there are n edges all with weight 1. And for unifor-
mity it is necessary to convert the n × n adjacency matrix

into a B × B one by padding the difference with identity
matrix entries to ensure the minimal uncertainty case is
still minimally valued.

Without these shared bin adjustments the uncertainty
of the temperature cities’ time series may become indis-
tinguishable because the standard RDMM measures are
scale-invariant by design. But with shared bins and re-
normalized measures the values for each city become com-
parable. This requirement for shared bins applies to any
situation in which the uncertainty levels being compared
come from different instantiations of the same kind of sys-
tem. For now, whether they should and/or can be used is
evaluated on a case-by-case basis.

C.2 Weather Data Correlations
One will surely notice the similarity of each of the tem-
perature time series to the noisy sine wave simulated data;
annual cycles with daily noise. Despite this general vi-
sual similarity, the measures values are more similar to
the plain random walk pattern. Recall that the noisy sine
wave produced a clean split between the RDMM and non-
RDMM measures. Looking at the correlation matrices
below, you will see that all cities share a similar corre-
lation pattern, and overall it is more similar to the ran-
dom walkers (and closest to the pure random walk) than
the noisy sine wave. For one, entropy and turbulence0.5
join the permutation-based measures, but also the corre-
lations among the remaining RDMM measures is weaker.
Interestingly, volatility (which has not been previously in-
cluded due to its mathematical restrictions) is highly cor-
related with the concave RDMM measures including un-
weighted edge density and turbulence2.
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The correlation matrices for the precipitation (mostly
rain) data tell a different story. The temperature data for
each city had different ranges, but they were all one-year
periodic time series with significant daily noise. Rain data
for these cities is less seasonally dependent and less var-
ied from day to day. Overall these correlation patterns (a
mostly clean split between RDMM and non-RDMM mea-
sures) are most similar to random noise and the noisy sine
wave. One clear exception is that turbulence0.5 is inversely
correlated except for Phoenix, and edge density is instead
inversely correlated for Phoenix. This is also the only case
in which RDMM entropy and turbulence0.5 are so weakly
and/or negatively correlated.

Because I did not generate data like this rain data (e.g.,
from a Poisson process), it is not surprising for the pattern
to be distinct. More importantly for our purposes here, the
fact that the RDMM measures (and turbulence2 in partic-
ular) measure the uncertainty in a way that is not tracked
consistently by any of the previous non-RDMM measures
suffices to demonstrate the RDMM measures comprise a
distinct method for determining the uncertainty of time se-
ries. That does not by itself mean that it is better method
or that they should be preferred; it is too early to judge
such a thing. However, this does establish independence
and hence the possibility to convey new information about
time series uncertainty.
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C.3 Weather Data Measure Values

Here we have plots for each measure across numbers
of bins for all eight datasets analyzed here (temp and pre-
cipitation in four cities). For reference in interpreting the
following plots, with 2,557 data points the max number of
bins that can generate max uncertainty Bm is 50, and we
provide the full sweep from 5 to 100 bins in order to show
sensitivity to binning.

The first immediately recognizable pattern is that, ex-
cept for volatility and a few crossover events at lower bin
values, temperature is rated as more uncertain than the
rain. It is clear from the data plots above that the tempera-
tures have greater variance and jaggedness. Furthermore,
rain tends to return to the lowest bin value (i.e., zero pre-
cipitation) in between short periods of higher values. Rain
patterns may be perceived/measured as less uncertain be-
cause they more often occur in bursts of increasing then
decreasing with (overall) fewer wild fluctuations on a day-
by-day basis.

San Diego and Phoenix have less rain, and intuitively
they have less uncertain rain patterns because of how often
the rain level is close to zero. The non-RDMM measures
consistently rate San Diego and Phoenix rain as similar,
and New York and Miami rain as similar (and greater) in
uncertainty. In contrast, the RDMM measures consistently

rank them as Miami, New York, San Diego, Phoenix; pre-
sumably this is because there is less focus on short-term
variation in the specifics of the series and more focus on
the range of values which can follow from each value.

The ranking of temperates is intuitively correct for the
RDMM measures, but not for most of the non-RDMM
measures (c.f., Increment Entropy captures this well). One
thing to note is that the temperature in New York is consis-
tently more uncertain that Phoenix according to basically
all measures; a results that coincides with it having both
a wider range of values and higher daily variation. Some
features can be captured by all measures, while other fea-
tures are captured by a subset of the measures.

Otherwise, the patterns here are basically as we have
come to expect. Variance and jaggedness are mostly insen-
sitive to the binning, while ApEn and SampEn are overly
sensitive (although only for the temperature). All the non-
RDMM measures are increasing with greater resolution,
which again highlights their focus on short-term variabil-
ity and point-predictability rather than an assessment of
larger-scale patterns in the data. Entropy and turbulence0.5
are more tame on these datasets, showing roughly the same
pattern as the other RDMM measures, but exacerbated up-
ward.
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Recall again that the nodes in an RDMM represent
only values observed in the dataset. San Diego never gets
more than 2 inches of rain in a day, whereas New York
gets up to 6 and everywhere in between. As a result of
this difference, San Diego’s rain (and temperature) RD-
MMs have roughly half as many nodes as the New York
RDMMs when using the same bins (see Table C.1 below

of percents of bins used). Recall that these are global bins;
e.g., the range between the maximum and minimum values
across all the rain data cute into B bins. And because they
are all normalized by the same B, having fewer nonempty
bins does not necessarily translate into lower uncertainty.
It depends on the pattern of transitions among the bins
used.

Weather Data Combined Model. We can also look at
the weather system behavior through a combined model
incorporating both rain and temperature into a single
RDMM. The temperature and precipitation are not clearly

correlated (although rain does seem seasonal in San Diego
and Miami, and therefore should be at least somewhat cor-
related with temperature), so each data stream provides
different information about the uncertainty of the cities’
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Number of Bins
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Temp in New York 1 0.9 0.933 0.9 0.92 0.9 0.914 0.9 0.889 0.9 0.891 0.883 0.877 0.871 0.88 0.875 0.847 0.867 0.853 0.85
Temp in San Diego 0.6 0.5 0.467 0.45 0.44 0.433 0.429 0.425 0.422 0.42 0.418 0.417 0.415 0.414 0.4 0.4 0.4 0.411 0.411 0.41

Temp in Phoenix 0.8 0.7 0.733 0.7 0.72 0.7 0.714 0.7 0.689 0.7 0.691 0.7 0.692 0.7 0.693 0.7 0.694 0.667 0.684 0.68
Temp in Miami 0.8 0.6 0.533 0.55 0.52 0.5 0.486 0.5 0.489 0.48 0.473 0.467 0.477 0.471 0.467 0.45 0.447 0.444 0.453 0.45

Rain in New York 1 0.8 0.667 0.65 0.64 0.6 0.6 0.55 0.556 0.54 0.527 0.517 0.492 0.486 0.467 0.45 0.459 0.433 0.432 0.43
Rain in San Diego 0.4 0.3 0.333 0.3 0.32 0.3 0.314 0.3 0.267 0.26 0.255 0.267 0.277 0.257 0.24 0.25 0.247 0.233 0.221 0.22

Rain in Phoenix 0.6 0.4 0.333 0.3 0.28 0.3 0.286 0.25 0.244 0.22 0.218 0.233 0.215 0.214 0.2 0.188 0.188 0.2 0.189 0.19
Rain in Miami 1 0.9 0.8 0.75 0.68 0.667 0.657 0.65 0.622 0.62 0.6 0.583 0.569 0.557 0.56 0.538 0.529 0.533 0.526 0.51

Table C.1: Percent of bins used for each number of bins for each dataset.

weather. We hold off on this analysis here (mostly in
consideration of space), but we plan to use the combined
model as a demonstration for a follow-up analysis incorpo-
rating time windowed uncertainty assessments (to capture
uncertainty variations by season). We still demonstrate the
combined time series RDMM method using exchange rate
data in the next section. Because we anticipate the time-
windowed versions of this technique will have broad appli-
cation, and comparing each of the time windows requires
the same shared-binning modifications to the methods and
measures, we introduce these modifications here for future
elaboration.

Summary of Weather Data Analysis. The main point
of this weather analysis is the shared binning and re-
normalization required to fairly compare different datasets
of the same type. This is clearly necessary to compare
the temperatures in different cities because if we rescale
San Diego and New York to the minimum and maxi-
mum of their respective ranges, then they will have similar
rescaled time series and hence similar uncertainty. That
is acceptable when we are merely interested in the inde-
pendent measurements, but for most practical applications
we expect San Diego to have less uncertain weather pat-
terns than New York...and we do if and only if we use a
shared binning. However, note that there is no benefit to
using the same binning for temperature and precipitation

— quite the opposite. When making comparisons of data
of different kinds, using their [min, max] range is often the
best, but it is important to determine the appropriate bin-
ning for each one in order to ensure a fair comparison on
a case-by-case basis.

One result of this weather data analysis is to reaffirm
that the RDMM technique reveals uncertainty informa-
tion that is distinct from previous measures. It also con-
firms that the RDMM measures are not merely tracking
the variance, volatility, or jaggedness of the time series.
The patterns among the RDMM measures here reinforce
the notion that the square root of turbulence2 is the most
suitable for empirical examinations. Although similar in
scale and sensitivity to some other RDMM measures on
these datasets, turbulence2 shows the greatest consistency
across binnings and correct relative values of uncertainty.

The intended application of these uncertainty mea-
sures is to multichannel physiological data: e.g., EEG,
ECoG, cardiac etc. are sensor arrays with multiple signals.
In order to compare the intensity/frequency of signals on
the same basis we need shared bins and appropriate re-
normalizations. Other augmentations are also likely nec-
essary for specific applications (such as Markov models
of changes in values and/or two-step Revealed Dynamics
Markov Models), but at minimum we presented this ma-
terial in order to introduce and demonstrate the required
re-normalizations for various shared-bin analyses.
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D Exchange Rate Data and Analysis

We analyze the exchange of the Euro against three
other currencies: United States Dollar, Japanese Yen, and
Russian Ruble. These references rates were collected from
01/01/2000 to 31/12/2016 from the Banca D’Italia website
[40]. Taking account of markets being closed on weekends
and holidays there are 4351 data points in each time series.

There are no static, anchoring values in the currency
market, only values to each other, and in this case rela-
tive to the Euro. Naturally the value (i.e., the purchas-
ing power) of the Euro also varied during this period, as
can be seen in the shared variation in the time series plots

below. It is possible to standardize the time series to fil-
ter out the shared variations (e.g., by subtracting each by
the mean value across the time series at each time step,
or subtracting each series by its mean and dividing by its
standard deviation), but for our current purposes it is ac-
ceptable to provide a Euro-centric analysis because it suf-
fices to compare the relative uncertainty of the three refer-
enced currencies to each other. That is, the relative uncer-
tainty measurements are invariant to these kinds of manip-
ulations, and thus the proposed technique minimizes the
preprocessing required.
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Although the similarity in dynamics implies that there
is some shared influence (the Euro’s value) driving the
behavior of these time series, they are individually very
similar to the random walking datasets analyzed above.
We will see this similarity through many analyses below,
starting with the percent of bins used. The yen always

uses 100% of the bins, while the dollar and ruble come
extremely close (minimum usage is 96.8%). This means
that all three datasets are dense within their range, which
results from accumulating small daily changes rather than
large jumps (just like the random walks).

D.1 Exchange Rate Measure Values by
Measure

This discussion in this section references the plots below
in which the US dollar is blue, the yen is golden, and the

ruble is red (matching the data plots above).

Although the unit of measure for each time series is its
value in Euros, they occupy distinct ranges of that scale
because their relative values to each other are quite dif-
ferent. The Dollar ranges from 0.8 to 1.6 Euros, the Yen
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Number of Bins
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

United States Dollar 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.988 1 0.989 1 0.99
Japanese Yen 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Russian Ruble 1 1 1 1 1 1 1 1 1 1 1 1 0.985 0.971 0.973 0.988 0.988 0.978 0.968 0.97

Table D.1: Proportion of bins used for each number of bins for each exchange rate dataset.

from 85 to 170 Euros, and the Ruble from 6.5 to 12 Eu-
ros. So in this case a comparison is fairer when distinct
(rather than shared) sets of bins are used. As mentioned
above, we could standardize the data before binning, and
use shared binning on the standardized data, but this won’t
affect the relative uncertainty values because the standard-
ization procedure puts each time series on its own basis in
a way similar to using independent bins does.

Like the weather and generated series, there is an in-
tuitive proper ranking of the uncertainty of these three ex-
change rate series. Because these series values are in Eu-
ros, a natural supposition is that the Ruble depends (co-
varies) the most on the Euro and the Yen depends (co-
varies) the least. So the Ruble should be the least uncer-
tain when captured as its value in Euros. From an ocular
analysis they seem roughly similar in their short-range and
long-range patterns, and so we should expect similar un-
certainty profiles for all three series across all binnings. If
we find deviations from the Yen ¿ Dollar ¿ Ruble ordering
then that reveals information about the system behavior
that is not obvious, not a priori, and not captured by other
measures.

Each time series has 4,351 data points, so the maxi-
mum number of bins capable of yielding maximum uncer-
tainty (Bm) here is 65, although we again sweep from 5
to 100 bins in increments of 5 to show sensitivity of the
measures to the data resolution. As described in detail
in the following paragraphs, the Yen follows trajectories
very close to the random walks on all measures, and all
three currencies are similar to each other in a fairly con-
sistent pattern: the Yen is most uncertain, followed by the
Dollar and then the Ruble. So all the (real) measures pass
this face validity check of getting the ordering correct and
there are no surprises in the relative dependencies on the
Euro.

Variance and volatility are uninformative on these
data, as is the runs test. The jaggedness of the yen is
similar to the random walking sine, the ruble is similar
to the basic sine wave, and the dollar is most similar to
the low frequency sine wave. Recall that as a measure
of monotonicity this implies that, whether up or down,
lower jaggedness means more consecutive values in the
same direction. Notice that increasing the resolution has

little effect on the measurement of jaggedness because it
reaches its unbinned value quickly. However, it is not so
clear that Jaggedness is doing a good job of capturing how
jagged the series is because, there doesn’t seem to be such
a big difference in monotonicity between the Yen and the
Dollar, and the Dollar doesn’t seem to be minimally non-
monotonic (I’ve checked the result, it is correct, but maybe
indicates a deeper issue with the measure or the normaliza-
tion).

Approximate and sample entropy produce the same
sawtooth pattern they usually above, and they report sim-
ilar uncertainty for these exchange rates as the random
walk (but much less than the walking sine wave). One
of the biggest differences between this exchange rate data
and the simulated data is the fact that many non-RDMM
measures do not reach their unbinned value by 100 bins.
For the random walkers this was only true of the incre-
ment entropy and permutation entropy, and only to a small
degree. On this data we see that coarse-graining the data,
even a little bit, significantly effects the reported uncer-
tainty by these measures (as well as the permutation test).
The reason is because these measures track the short-term
fluctuations in the data, and so greater resolution exposes
more noise (fewer ties) and the measure values continue
to increase with increasing resolution because the data is
“messier” than the simulated random walks (idiosyncratic
changes across more time steps).

Entropy and turbulence0.5 are steadily increasing
across increasing resolution, but more slowly and
smoothly than they did for the random walk and walk-
ing sine wave. Edge density is decreasing smoothly, and
uniformity follows edge density closely after 20 bins.
Turbulence2 (and turbulence3, which was left out for
brevity because it added no additional value) seems insuf-
ficiently sensitive the variations in edge weights to differ-
entiate the currencies. However, seeing the square root
of the measures reveals that, although the differences are
small, they are ranked appropriately. From a Markov
model perspective, these kinds of random walk-like se-
quences are very predictable, and this fact is clearly re-
vealed in the low and decreasing uncertainty from the core
RDMM measures compared to the high and increasing
non-RDMM measures.
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D.2 Exchange Rate Measure Values by Dataset

We now look at the comparison of the measures for
each currency to check relative values and patterns. The
first obvious pattern is that the same set of measures is in-
creasing with increasing resolution in each case. Incre-
ment and permutation entropies follow one pattern and
RDMM entropy and turbulence0.5 follow another pattern
or increasing values. The overall pattern of all the mea-

sures is extremely similar to that found on the random
walk dataset for both the Dollar and Yen, but much less
so for the Ruble. In fact the Ruble is less uncertain for all
the measures (both RDMM and non-RDMM), although
the difference is more drastic for the non-RDMM mea-
sures.
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D.3 Exchange Rate Measure Correlations

It should be no surprise by now that the three corre-
lation matrices here also look very similar to the corre-
lation matrix for the random walk (and random walking
sine wave). The biggest differences occur for turbulence2
which is now less correlated with the other RDMM mea-
sures for the Yen and Dollar. There are other particular
differences, but the general pattern is the same. As we
saw on the simulated data, random walk datasets are the
type that produce disagreement about how the uncertainty

should scale with increased resolution. If we eliminate
those measures that are upward sloping, and those that are
largely invariant to the edge weights, then we are left with
ApEN, SampEn, and turbulence2. It’s not clear who the
“winner” is here. On the Ruble they are correlated, but on
the Yen and Dollar turbulence2 is coupled to the increas-
ing measures while ApEN and SampEn are coupled to the
insensitive ones.
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D.4 Combined Exchange Rate Analysis

Here we analyze the uncertainty of all three exchange
rate datasets together instead of separately. One of the
advantages of the RDMM encoding is that it can capture
multiple dimensions simultaneously by making each node
a combination of values across the dimensions. The result
is still a Markov model of the phase space, and the RDMM
will only include the parts of the discretized space that
are actually observed (non-empty voxel bins). Because
we only need a node for those combinations of values that
actually occur in the combined time series, it suffers less
from the exponential expansion of the phase space volume
with each added dimension. There are never more nodes
in the RDMM than points in the data, and with binning
there are (if the model is going to be useful) many fewer
nodes than datapoints regardless of the dimensionality. As
a demonstration, we build the RDMM from the three ex-
change rate times series together and compare the uncer-
tainty results here to the average of the results from the
(binned and unbinned) non-RDMM measures.

One thing we already noted above is that, because all
these are exchange rates against the Euro, and the Euro it-
self fluctuated in its own value during this period, the gen-
eral dynamics of each time series are similar. That is to
say, they are correlated. And because they are correlated,
most of the B × B × B possible combinations of the vari-
ables are never seen, and so they do not get represented as
a node of the RDMM. Compared to the one-dimensional
times series above in which nearly 100% of the bins were
used, we can see in Table D.2 that raising the dimension
still greatly increases the number of nodes, but also greatly
reduces the percent of bins that are occupied (when the
data are correlated).

There are 4351 data points in each time series and
obviously the same number in the combined time series.
When we plug this into our general equations for deter-
mining the maximum number of bins that can support
a full uncertainty level with 3 dimensions, the result is
Bm = 4. Four bins per variable, for three variables, pro-
duces 64 voxels in the 3D space, which is the same number
of bins supported by that number of data points in the 1D
case above. We again analyze from 5 to 100 bins per vari-
able, and what this means is that we can expect to see large
suppression of the RDMM measures from the decreased
density rather than true measures of the model structure. It
also means that the number of observations per combina-
tion of value drops dramatically after the first few binning
values, and with it our confidence that we have captured a
real and coherent behavior in the data. We leave this issue
for future work to focus on the differences among mea-
sures on the combined model versus combining the mea-
sures, but address them in the discussion section below.

Non-RDMM measures have no way to measure the
aggregate uncertainty of multiple time series besides ag-

gregating the measures derived from each one separately.
None of those methods support multi-dimensional time se-
ries, nor are there clear generalizations of the calculations,
although they can (and have been) applied via aggregation
and/or dimension reduction to some of the key applica-
tions that are multidimensional systems (brain data, heart
data, economic data). The RDMM approach can seam-
lessly calculate the uncertainty of these combined time se-
ries. As just noted, this does require a large volume of
data to support such an analysis or else lose either (1) the
needed resolution or (2) sufficient confidence in the re-
sults. Some modern datasets have the needed length, but
the lack of any methods to handle them directly means
that fewer than expected were collected at sufficient scales
(chicken and egg problem).

The next point is about how the measures of uncer-
tainty differ with a multidimensional analysis. One would
guess that the non-RDMM measures would be unaffected
by the dimensionality because they are being calculated
from the individual series values (using the mean value).
Well, that is true for non-binned data, but when we lower
the resolution of the three-dimensional data, the selection
of which points are in which bins changes with different
bin boundaries. When the selection of points in a bin
changes, that also changes the centroid of the points within
that bin, and it is those centroid points that are used as the
value for that bin to calculate the uncertainty measures.
Thus combining the datasets into a three-dimensional
one does change the binned non-RDMM measures even
though they are calculated as the mean value across each
dataset determined independently (from binning based on
the values in three-dimensions).

The RDMM measures also change with binning, of
course, because a Markov model build from all the dynam-
ics of the three points considered together (i.e., the dynam-
ics in the three-dimensional phase space) will yield a dif-
ferent distribution of exit transitions across all the nodes.
Compared to the above plots of the currencies considered
separately, you can see in the plot below that ApEn and
SampEn become smoother and slightly lower. Increment
entropy and the permutation-based measures are elevated
both in the sense of rising earlier and reaching higher lev-
els. Entropy and turbulence0.5 lose their upward slopes
and become “well-behaved” measures with larger values,
although likely due to normalization depression. The other
RDMM measures behave basically as expected: they have
the same initial drop and a smooth curve towards very low
values (even after applying the square root). And they are
further depressed by the normalization. What these results
tell us is that, given a sufficient resolution, the time series
of combined exchange rates produces a Markov model that
is nearly deterministic.

To properly interpret this, we have to consider the se-
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ries’ Markov model representation. Each bin 3D phase
space only has a few observations, and hence only a few
exit transitions. Many will have only one transition with
weight 1. That extremely low value is an accurate assess-
ment of the uncertainty of the generated Markov model,
but we have good reason to question whether this Markov
model is an accurate representation of the data. This leads
us to the deeper discussion in the next section of the pros
and cons of this RDMM methodology for measuring un-
certainty.

However, what this section does demonstrate is that
building and analyzing the RDMM from multidimensional

data is just as easy as the single dimension case, and
(due to correlation, anti-correlation, and other relation-
ships among the data series) may reveal very different re-
sults than one could get from the aggregation of the results
obtained separately. That is a clear and distinct advan-
tage of the RDMM approach for analyzing multi-channel
datasets. Although more advanced binning techniques can
partially alleviate the increase in nodes while increasing
the resolution, it is still the case that high-dimension ap-
plications need more data. The curse of dimensionality
isn’t lifted, but its symptoms are less severe.

Number of Bins per Variable
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Number of Nodes 42 132 249 401 560 709 883 1066 1202 1392 1558 1722 1858 2023 2149 2287 2440 2505 2640 2709
Proportion of Bins Used 0.336 0.132 0.074 0.05 0.036 0.026 0.021 0.017 0.013 0.011 0.009 0.008 0.007 0.006 0.005 0.004 0.004 0.003 0.003 0.003

Table D.2: Number of nodes generated (i.e., observed bin values) and the resulting proportion of bins used for each
number of bins for the combined analysis.
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E Expanded Discussion

The main paper’s discussion and conclusions sections
include material relating this research back to previous
work, material on the importance of our main results, and
directions for future work. Here we provide some ex-
panded thoughts on each of these points as well as addi-
tional material that is slightly outside our primary focus.

Comparison to Hidden Markov Models and Markov
Chains. There is nothing new about capturing time se-
ries as Markov models and looking for patterns in the
structure of the Markov model to elucidate patterns in the
system behavior. Capturing time series as Markov model
facilitates measuring the difference/distance between two
series [], which suffices to use Markov models for unsuper-
vised classification (clustering) of time series data []. Typ-
ically Markov models are used for categorical data, and we
simply converted our real-valued data into categorical data
by binning the values; another simple mathematical feat
with prior precedent but little widespread attention. In fact
their dependence on categorical data (separately or in con-
junction with value-ranged data) is both a limitation and
benefit. For more sophisticated empirical systems, much
of the heavy lifting of applying RDMMs is in the binning
step, and a great deal of sophisticated AI can be (and has
been) brought to bear on the binning.

We do not endeavor to cover anything like a history
of Markov models, but they have been widely known and
used in a variety of fields for a variety of purposes. His-
torically their primary use is a generative tool for predic-
tive modeling, and in this case Hidden Markov Models
(HMMs) are far more common. Their use for prediction
has been largely overshadowed by more advanced tech-
niques that can more easily handle longer memories and
more sophisticated patterns, however most of these ad-
vanced predictive tools lack any descriptive or explanatory
power. Capturing time series behavior as a Markov model
can reveal features of its dynamics even in cases where the
Markov assumption is inappropriate, and the interpretation
is intuitive even if occasionally misleading. The RDMM
approach here utilizes the descriptive power of Markov
models to facilitate measure of the uncertainty. Here we
present turbulence and the other RDMM uncertainty mea-
sures using the sequence of value directly, but the same
measures can be applied to two-stage Markov models,
ones generated from the sequence of slopes, or other en-
codings of the data into any kind of Markov model.

Comparison to Neural Nets. Markov models have
some superficial similarities to artificial neural networks
(ANN), and deriving the edge weights of RDMMs has a
close analogy. Feeding in more data to either system will
strengthen the edges that are repeated and weaken those

that are rare. Although RDMMs can be used for within-
sample prediction based on the Markovian assumption,
that is not their purpose. They are meant to be descrip-
tive only, like capturing a dataset as a histogram, but with
respect to the dynamics. However, it is possible to build
(“train”) multiple RDMMs from distinct datasets, and then
match a new dataset’s RDMM to the learned ones based
on their network properties (work in progress). In addi-
tion to the identification/classification task, because the
RDMM encodes the dynamics in a way that is meaning-
ful rather than a black box, they can be dissected and ex-
plored for further insights. Specific micro-behaviors can
then be identified and exploited as motifs of the Markov
model’s network. RDMMs can also be used for unsu-
pervised learning of behavior categories by clustering on
measures of network properties beyond the uncertainty
measures presented here. We are currently engaged in
all these applications and others that leverage the unique
properties of this methodology.

Main Conclusions. The main conclusion of this anal-
ysis is that the various measures of time series uncer-
tainty/complexity track different features of time series,
and thus capture different senses of uncertainty. Increment
entropy and the permutation-based measures are focused
on short-term local variation and do not account for global
patterns, so these measures increase with increasing res-
olution, especially on noisy data (although increment en-
tropy does have a distinct pattern in a few cases). This
certainly is one aspect of time series uncertainty, and cap-
turing it (with permutation entropy as recommended by
our results) is useful for capturing this aspect.

ApEn and SampEn look for globally shared local pat-
tern; so they also assign high uncertainty to time series
that are noisy overall, but do a poor job at accounting for
many obvious underlying patterns. Because SampEn was
designed to overcome a specific known bias of ApEn, it
is the recommended measure from this class. We will not
make the case either way about whether these measures
capture an essential feature of time series uncertainty, but
considering their popularity for this use we acknowledge
that they comprise another independent class of uncer-
tainty measures.

The RDMM measures developed here offer a differ-
ent global view of local variation. It assesses the pre-
dictability based on the full distribution of state transi-
tions; i.e., how deterministic the next value is from the
given value, across all values. This is implicitly claim-
ing that being predictable is being Markovian, and here it
is limited to one-step Markov models. As we have fre-
quently repeated, we only intend the Markov encoding to
be descriptive of the dynamics seen (not the generating
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mechanism). Markov models built directly from the phase
space capture the patterns observed, and could be used to
create sequences with similar uncertainty profiles (which
we confirmed), but they are unlikely to create sequences
similar to the original data.

Among the RDMM measures presented here, turbu-
lence with q = 2 has the best overall features as a mea-
sure of uncertainty: (1) it is not especially sensitive when
the model is sparse or dense, (2) it correctly ranked each
of our test cases, and (3) strikes an adequate balance be-
tween sensitivity to the data and robustness to the bin-
ning. Of particular interest is the fact that Shannon en-
tropy of the RDMM, the standard go-to measuring for this
kind of system complexity, does such a poor job. Entropy
reveals itself to be overly sensitive to the bin boundaries
and mischaracterizes random walks. The turbulence mea-
sures (based on the effective degree of the nodes) are tun-
able based on the shape parameter q, and are worth fur-
ther investigation for further refinements and perhaps a
data-driven specification of the q parameter (e.g., one that
scales with the density of the Markov model’s adjacency
matrix). Uniformity is a novel specification of a measure
similar to both entropy and effective degree, but it lacks
sensitivity to the specific distribution of edge weights and
as a result fails to properly capture uncertainty of these
systems.

RDMM’s dependence on coarse-graining forces a pa-
rameter for the number of bins. We have often discussed
the Bm value that can be set according to a heuristic based
on the number of data points and the number needed to
reach maximum uncertainty. However this recommended
value may recommend too few bins than what is useful for
other purposes unless the dataset is very large (i.e., very
long time series). Because many useful applications in-
volve short time series, an alternative approach (pursued
in future work) is a normalization of the uncertainty mea-
sures by the maximum level attainable given (1) the num-
ber of data points and (2) the number of nodes generated
by a desired binning. However, we will generally be in-
terested in relative values, so for applications on data us-
ing the same binning and time series length, the lack of a
proper normalization is unproblematic.

The use of RDMMs for measuring the uncertainty of
time series should be useful in many contexts, many of
which are currently being explored (such as brain and car-
diac signal data). There will likely be some contexts in
which it is inappropriate, and an existing measure like
ApEn will be preferable; the main point here is that they
measure different features of the time series, and so one
would benefit from an ensemble approach that combines
the insights from multiple measures. The fact that Markov
encodings of phase spaces have so many other applications
(such as measuring robustness, capturing coherent behav-
ior regimes, pattern recognition, and unsupervised learn-
ing of coherent behavior motifs), their use for measuring

uncertainty on general time series represents only part of
a suite of tools based on RDMMs.

One advantage of the RDMM approach is the ability to
directly apply to high-dimensional time series, a capabil-
ity of increasing demand. Higher dimensionality requires
either a lot of data or a lower resolution, but we have seen
that many of the previous measures of uncertainty perform
unexpectedly and counterintuitively with changes in the
binning. Because the only way to aggregate these mea-
sures is something like averaging their dimension-wise
values, the combined uncertainty may not accurately re-
flect the patterns in the high-dimensional sequence. We
demonstrated this worry by showing that the average of the
RDMM measures is distinct from the RDMM measures of
the combined time series, and the differences depend on
the interactions/correlations of the individual series. Aside
from even stricter requirements on the size of datasets,
high-dimensional applications is where we expect to see
the greatest comparative advantage for the RDMM ap-
proach.

Future Work. We have several ongoing projects based
on variations of the RDMM methodology. For example,
by analyzing data in moving time-windows we can map
changes in the uncertainty of the time series in order to
categorize behavioral regimes [41] and detect precursors
to events [42]. Questions of data requirements become
highlighted in this case because if we want, for exam-
ple, windows of length 100, the resolution should be low,
but low resolutions produce inaccurate measures of un-
certainty because the contours of the data are sometimes
smoothed away.

When using the RDMM technique, noise in the data
is handled natively because (1) the data are binned to ag-
gregate small variations and (2) large variations will typi-
cally show up as low probability transitions (or small de-
viations in the existing transitions) with only small effects
on the measures of uncertainty. Furthermore, it is possible
to use the edge observation frequencies to assign a (non-
parametric multinomial) confidence measure to the transi-
tion probabilities. Using the confidence levels of the edges
we can prune the RDMM of edges below an established
threshold confidence level. However, if the idea is to re-
move sensor noise so it is not confused with signal vari-
ability, then this is probably better handled by data clean-
ing techniques specialized to the sensor/data being ana-
lyzed because “fuzzy” sequences with a strong structure
may look similar to noisy with respect to the model-wide
set of exit distributions.

Aside from handling higher dimensions, another ad-
vantage of the RDMM approach is the ability to capture
multiple time series in a single model as independent tri-
als. That is, rather than considering them to be different
dimensions of the phase space, the separate time series
can be included as separate runs of the process. This is,
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of course, especially useful in applications to stochastic
simulations, but can also be useful for clinical data. In
this way, rather than having especially long time series it
is possible to combine multiple short ones by simply in-
creasing the transition frequency counts across all the time
series before normalization and achieve higher resolutions
and/or higher confidence. This assumes that all trials are
generated by the same process (so the RDMM is a model
of the process rather than a particular run through it) and
that they are independent (in the sense that the dynamics
of one do not influence the others). So it would be bad
to combine behaviors of multiple people who cooperated
in the same experiment, but it would be fine to combine
the behaviors of multiple people went through the same

experiment separately. Establishing criteria for when to
consider time series as dimensions or trials is the focus of
another extension of this methodology.

Measures of uncertainty are often deployed to identify
changes in the characteristic behavior of time series such
as cardiac arrhythmias [43], epileptic EEGs [44, 45], fi-
nancial dynamics, [46], and many others. To apply these
kinds of measures it is necessary to cut up the series into
smaller time windows and calculate the uncertainty mea-
sures for each one. Having established the robustness and
compared the evaluation of the RDMM measures here, we
will next turn to their performance on tests such as iden-
tifying the precursors to seizure onset and abnormal heart
rate variability using this time-windowed approach.

References
[1] M. Vidyasagar, Hidden Markov processes: theory and applications to biology. Princeton University Press, 2014.

1

[2] N. Ye et al., “A markov chain model of temporal behavior for anomaly detection,” in Proceedings of the 2000
IEEE Systems, Man, and Cybernetics Information Assurance and Security Workshop, vol. 166, p. 169, West Point,
NY, 2000. 1

[3] E. K. Rains and H. C. Andersen, “A bayesian method for construction of markov models to describe dynamics on
various time-scales,” The Journal of chemical physics, vol. 133, no. 14, p. 144113, 2010. 1

[4] L. R. Rabiner, “A tutorial on hidden markov models and selected applications in speech recognition,” Proceedings
of the IEEE, vol. 77, no. 2, pp. 257–286, 1989. 1

[5] S. Fine, Y. Singer, and N. Tishby, “The hierarchical hidden markov model: Analysis and applications,” Machine
learning, vol. 32, no. 1, pp. 41–62, 1998. 1

[6] C. R. Shalizi and K. L. Shalizi, “Blind construction of optimal nonlinear recursive predictors for discrete se-
quences,” June 2004. 1

[7] W. Zucchini, I. L. MacDonald, and R. Langrock, Hidden Markov models for time series: an introduction using R,
vol. 150. CRC press, 2016. 1

[8] G. Tauchen, “Finite state markov-chain approximations to univariate and vector autoregressions,” Economics
letters, vol. 20, no. 2, pp. 177–181, 1986. 1

[9] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation ranking: Bringing order to the web.,”
Technical Report 1999-66, Stanford InfoLab, November 1999. Previous number = SIDL-WP-1999-0120. 1

[10] N. Singhal and V. S. Pande, “Error analysis and efficient sampling in markovian state models for molecular
dynamics,” The Journal of chemical physics, vol. 123, no. 20, p. 204909, 2005. 1

[11] R. V. Donner, Y. Zou, J. F. Donges, N. Marwan, and J. Kurths, “Ambiguities in recurrence-based complex network
representations of time series,” Physical Review E, vol. 81, p. 015101(R), 2010. 1

[12] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.-U. Hwang, “Complex networks: Structure and dynamics,”
Physics Reports, vol. 424, no. 4-5, pp. 175–308, 2006. 1

[13] J. Zhang and M. Small, “Complex network from pseudoperiodic time series: Topology versus dynamics,” Physical
Review Letters, vol. 96, p. 238701, 2006. 1

[14] R. V. Donner, Y. Zou, J. F. Donges, N. Marwan, and J. Kurths, “Recurrence networks - a novel paradigm for
nonlinear time series analysis,” Aug 2009. 1

62



[15] C. E. Shannon and W. Weaver, The Mathematical Theory of Communication. University of Illinois Press, 1971. 3

[16] M. Laakso and R. Taagepera, “Effective number of parties: A measure with application to west europe,” Compar-
ative Political Studies, vol. 12, pp. 3–27, 1979. 4

[17] A. Barrat, M. Barthelemy, R. Pastor-Satorras, and A. Vespignani, “The architecture of complex weighted net-
works.,” Proceedings of the National Academy of Sciences, vol. 101 (11), pp. 3747–3752, 2004. 4

[18] T. Opsahl, F. Agneessens, and J. Skvoretz, “Node centrality in weighted networks: Generalizing degree and
shortest paths.,” Social Networks, vol. 32, pp. 245–251, 2010. 4

[19] E. H. Simpson, “Measurement of diversity,” Nature, vol. 163, p. 688, 1949. 4

[20] S. M. Pincus, “Approximate entropy as a measure of system complexity.,” Proceedings of the National Academy
of Sciences, vol. 88, no. 6, pp. 2297–2301, 1991. 6
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