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SI-1 A REVIEW OF RELEVANT LITERATURE

SI-1.1 An immunobiochemical reconstruction scope

Given the complexity of the processes relevant to the observations (O1) - (O5), we must limit the scope
of our research. Because the interaction between PD-1 and PD-L1 is regarded as a major “T cell brake”
(Nirschl and Drake, 2013), and because it is also a central topic in (Kohlhapp et al., 2016), we center our
analysis on the construction of the gene regulatory networks (GRNs) directly involved in the expression of
PD-1 receptors under different immunologic contexts.

A very important topic that shapes the scope of our work is that T cell activities are controlled at multiple
levels. These regulatory controls are necessary to prevent T cells from becoming hyperactivated, causing
significant collateral damage to non-target tissue. These types of responses enhance inflammation, resulting
in the release of self-antigens from necrotic tissue, increasing the chances for the induction of autoimmune
diseases (Liechtenstein et al., 2012). To avoid autoimmunity induced by necrotic tissue, key regulatory T
cell inhibitory interactions occur between PD-L1 expressed on immune, infected and tumor cells (Nirschl
and Drake, 2013), and, PD-1 expressed on T cells (Sakaguchi et al., 2008; Fife et al., 2009; Francisco et al.,
2010; Nirschl and Drake, 2013; Schietinger and Greenberg, 2014; Bardhan et al., 2016; Sharpe and Pauken,
2017).

SI-1.2 A TCR activation primer

For a strong CD8+ T cell activation, three well-known signals have to be provided from professional
antigen presenting cells (APCs) (Kindt et al., 2007):

• Signal 1: Antigen presentation to T cells.
• Signal 2: Co-stimulation.
• Signal 3: Cytokine priming.

Signal 1 is mediated by binding of a T cell receptor (TCR) on T cells with its cognate antigen presented
on an MHC.

Signal 2 is mediated by a series of receptor:ligand bindings, such as CD80 binding to CD28 between the
APC and the T cell, respectively. The combination of TCR engagement, CD28 binding, and IL-2 activates
Zap-70, lck and PI3K, which in turn lead to T cell activation, expansion, and acquisition of effector
activities (Liechtenstein et al., 2012; Rendall and Sontag, 2017). Furthermore, in reality, as Liechtenstein
et al. (2012) states, a variety of ligand-receptor interactions take place in the immunological synapse, many
of which are inhibitory. The final integration between activatory and inhibitory interactions determine the
type and strength of the co-stimulatory signal given to the T cells, setting the “degree” of T cell activation.

Signal 3 is mediated by binding of cytokines to their respective receptors, such as IL-2 produced by T
cells binding to IL-2 receptors also on the same T cells.

During antigen presentation to naı̈ve T cells, PD-1:PD-L1 interaction acts as a brake in TCR signal
transduction (Nirschl and Drake, 2013). PD-1 is transiently up-regulated during antigen presentation as a
consequence of T cell activation (Freeman et al., 2000) and PD-1:PD-L1 binding results in ligand-induced
TCR down-modulation (Escors et al., 2011; Karwacz et al., 2011, 2012).

To this end, Liechtenstein et al. (2012) suggest that TCR down-modulation is absolutely required for T
cell activation in order to prevent T cell hyperactivation by terminating TCR signal transduction. In such
cases, PD-1 associates to the TCR at the immunological synapse and controls its signal transduction as well
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as its presence on the T cell surface (Karwacz et al., 2011). TCR down-modulation is largely reduced when
PD-L1 is silenced in antigen-presenting DCs, or when PD-1:PD-L1 is blocked using antibodies during
antigen presentation (Liechtenstein et al., 2012).

Finally, as further reviewed in (Liechtenstein et al., 2012), PD-1:PD-L1 interactions control the timing of
TCR stimulation in at least two different ways: (i) by removing TCRs from the T cell surface, and (ii) by
terminating the intracellular signal transduction pathways after recruiting phosphatases SHP1 and SHP2
(Zhang and Rundell, 2006; Bardhan et al., 2016). Note briefly that processes in (ii), put, for example, a
brake on NF-κB signaling, the inhibitory process that shuts down IRF4, which in turn removes the Blimp-1
imposed brake from PD-1 transcription, where both IRF4 and Blimp-1 are key molecular species of our
analysis, as discussed below in detail.

SI-1.3 Linking observations with immunological mechanisms

(O1) Anti-tumor CD8+ T cells are shunted to the lung during influenza infection.

Here, we discuss six mechanisms (O1-M1) - (O1-M6). In order to get insight into mechanism (O1-M1),
we subdivide mechanism (O1-M1-B) into two complementary immunological mechanisms (O1-M1-A)
and (O1-M1-B).

Mechanism (O1-M1-A) Cytotoxic CD8+ T cells (TEFF) are highly dynamic within dense tissue once
activated, immediately followed by their migration arrest, induced by integrin upregulation that stops
motion and promotes effective synapse formation (Feinerman et al., 2008) when contacting a high potency
antigen available at adequate density on tissue resident antigen-presenting cells (APCs) (Marelli-Berg
et al., 2010; Honda et al., 2014). Indeed, T cells in tissues migrate along chemotactic gradients until they
encounter antigen on an APC, which leads to their Intercellular Adhesion Molecule (ICAM-1)-dependent
arrest by TCR-mediated “stop signals” (Jennrich et al., 2012).

Specifically, activated T cells have been shown to rapidly traffic in tissue in response to chemokines and
cytokines (Kindt et al., 2007; Chimen et al., 2017), including CXCL9, CXCL10, INFγ, etc. (Ogawa et al.,
2002; Baaten et al., 2013; Oelkrug and Ramage, 2014; Kim and Chen, 2016; Spranger, 2016; Stein et al.,
2016) with a primary function to find and kill target cells expressing cognate antigen (Ag) (Bhat et al.,
2014).

Dynamic speed and travel patterns of TEFF are predominantly influenced by the tissue environment
rather than by mechanisms intrinsic to the TEFF. Specifically, activated T cells have been shown in vivo to
traffic to inflamed skin, even in the absence of cognate Ag (Biotec and Gladbach, 2011), suggesting that Ag
alone does not play an essential role in the recruitment of circulating CD8+ T cells (Van Braeckel-Budimir
and Harty, 2017).

To this end, a natural question arises: “Why is it the anti-tumor TEFF cells that are shunted to the infected
lung, and not vice versa, that is, why is it not the anti-influenza TEFF cells that are shunted to the tumor
compartment instead?”

Mechanism (O1-M1-B) The above question can be addressed by reviewing in vivo studies describing T
cell Ag-induced arrest in tissues in direct proportion to the amount of Ag present (Beattie et al., 2010;
Deguine et al., 2010; Celli et al., 2011; Honda et al., 2014). Indeed, the time needed for the TEFF killing of
highly antigenic cells in vivo through the cell-to-cell attachment and TCR-pMHC (Ag) binding events can
be partiality attributed to effective half-life or “confinement time” of a TCR-pMHC interaction (Aleksic
et al., 2010).
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The process can last for long periods of time depending on the context, (i) in the range of 40 minutes, (ii)
over 3-6 hours and (iii) up to 48 hours, in order to form “stable immunologic synapses” (Grakoui et al.,
1999; Liechtenstein et al., 2012; Xie et al., 2013; Tkach and Altan-Bonnet, 2013; Ortega-Carrion and
Vicente-Manzanares, 2016; Stein et al., 2016), which are needed to complete a series of signaling events,
including co-receptor recruitment and TCR phosphorylation (McKeithan, 1995; Garcia et al., 2007; Breart
et al., 2008; Tkach and Altan-Bonnet, 2013; Liu et al., 2014; Das et al., 2015; Parello and Huseby, 2015).

Although T cells become rapidly arrested after their contact with Ag-presenting tissue-resident cells, their
subsequent recovery period was found to be heterogeneous, with some cells regaining motility within 30
min and others remaining arrested for several hours (Honda et al., 2014). After the extended arrest, T cells
can be oscillating between periods of brief arrest and motility, suggestive of additional TCR stimulation,
before regaining a migration pattern similar to what was observed in the absence of antigen (Honda et al.,
2014).

Such Ag-induced arrested T cells are functionally very distinct of highly motile T cells, because the
arrested T cells were found to be characterized by a profoundly increased production of INFγ (Honda et al.,
2014).

All this suggests that T cell Ag-induced arrest on target cells positively correlates with their effector
function, and the balance between motility and Ag-induced arrest controls T cell activation (Stein et al.,
2016).

Here, the definitions of “long periods of time” and “stable immunologic synapses” should be understood
dynamically and not statically in terms of “fast association and dissociation rates” (Coombs et al., 2011;
Tkach and Altan-Bonnet, 2013) that define the “confinement time” of a TCR-pMHC interaction (Aleksic
et al., 2010). Multiple studies have indicated that T cells integrate these discontinuous antigen contacts
over time and respond in proportion to the cumulative duration of TCR signaling as reviewed in (Tkach
and Altan-Bonnet, 2013).

Many tumor-specific antigens provoke only weak immune responses, which are incapable of eliminating
all tumor cells (Aleksic et al., 2010). This is in line with the McKeithan-Altan-Bonnet-Germain kinetic
proofreading model (KPL-IFFL) (Hopfield, 1974; McKeithan, 1995; Altan-Bonnet and Germain, 2005;
François et al., 2013; Courtney et al., 2017), which is based on the well-established fact that T cell activation
is selected by evolution to discriminate a few foreign peptides rapidly from a vast excess of self-peptides
(François et al., 2013). We use the abbreviation KPL-IFFL for the kinetic proofreading model coupled with
limited signaling and incoherent feedforward loop (Lever et al., 2016).

Because many tumor antigens are self antigens (Liechtenstein et al., 2012), often called Tumour-
Associated Antigens (TAAs) and Tumor-Specific Antigens (TSA) (Kindt et al., 2007), anti-tumor TCRs
may be of lower affinity due to their selection and training against “self”-antigen reactivity (Hogquist
and Jameson, 2014) compared with those TCRs evolved to recognize viral epitopes (Irving et al., 2012;
Vonderheide and June, 2014). Indeed, the affinity of TCR clones for novel or not previously encountered
antigens, like tumor antigens, is remarkably low, typically 1 - 10 µM (Courtney et al., 2017). This is in line
with a commonly accepted fact that high-affinity tumour-specific TCR clonotypes are typically deleted
from the available repertoire during thymic selection because the vast majority of targeted epitopes are
derived from autologous proteins (Tan et al., 2015).

This phenomenon is known as “antigen discrimination” (Galvez et al., 2016; Rendall and Sontag, 2017),
and is currently discussed in terms of the “antigen-receptor (catch bonds) lifetime dogma” (Feinerman
et al., 2008; François and Altan-Bonnet, 2016).
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In addition to the TCR antigen discrimination, tumors do not express large amounts of cognate Ag on
MHCs to keep systemic tolerance and prevent the development of autoimmune diseases (Liechtenstein
et al., 2012; Nirschl and Drake, 2013), compared with viral infection.

Antigen expression by tumor cells thus determines TEFF motility within the tumor (Boissonnas et al.,
2007). Such mobile TEFF cells can follow collagen fibers or blood vessels, or migrate along blood vessels
preferentially adopting an elongated morphology (Boissonnas et al., 2007), when nothing can prevent them
from freely moving along high infection-induced chemokine gradients toward the infected and inflamed
lung.

We finalize the description of this mechanism by pointing out a very important and relevant study
(Poleszczuk et al., 2016) which documents intensive motility of anti-timor TEFF cells when the anti-timor
TEFF cells enter and leave the TME back to the bloodstream and lymph multiple times before they get
finally arrested and absorbed by the multiple-time revisited TME.

Mechanism (O1-M2) Tumors themselves may induce emigration of tumor-specific CD8+ T cells from the
TME by employing chemokines like SDF-1/CXCL12 (Marelli-Berg et al., 2010; Joyce and Fearon, 2015;
Kim and Chen, 2016). When the level of CXCL12 becomes greater than the levels of other chemoattractors,
CXCL12 acts as chemorepeller (Marelli-Berg et al., 2010; Vianello et al., 2005), that is, at low levels,
CXCL12 is a chemoattractor, while at high levels CXCL12 is a chemorepeller. Expression of CXCL12 and
its receptor CXCR4 is induced by IFNγ (Ogawa et al., 2002; de Oliveira et al., 2013).

Sometimes, this effect is called fugetaxis (Vianello et al., 2005). Because IFNγ is produced in large
quantities by different cell types in inflamed infected sites (Kindt et al., 2007), and then circulates to the
tumor site within the bloodstream, it can be concluded that (distant) infection can significantly contribute
to the egress of anti-tumor CD8+ T cells from the TME.

Mechanism (O1-M3) Due to non-specific cardiovascular edema effects, caused by infection-induced
inflammation (Marchuk, 1997), the general circulation pattern of central memory (TCM) and naı̈ve T cells
(Donnadieu, 2016; Levin et al., 2016) throughout the body from blood, across high endothelial venules
(HEVs) into lymph nodes, through T cell zones, out via efferent lymphatics, and eventually back into the
blood through the thoracic duct is significantly perturbed and is redirected to the site of infection-induced
inflammation (Marchuk, 1997; Levin et al., 2016).

Mechanism (O1-M4) As mentioned earlier, different cells in infected tissues induce cytokine production
(Kindt et al., 2007). Cytokines play multiple roles such as chemoattraction of dendritic cells, macrophages,
T cells, NK cells, and promotion of T cell adhesion to endothelial cells (Dufour et al., 2002). To this end,
significant levels of both activated influenza-specific and non-specific T cells were found present in infected
lung and measured (Toapanta and Ross, 2009).

The inflammatory chemokine receptor CXCR3 has been recently identified with effective T cell function.
CXCR3 expression is increased during T cell activation and is important for homing to inflammatory sites.
Its ligands CXCL9, CXCL10 and CXCL11 are rapidly induced during inflammation and guide T cells into
specific microenvironments in lymphoid and non-lymphoid tissues as reviewed in (Stein et al., 2016).

Mechanism (O1-M5) High levels of IL-2 produced by activated anti-infection CD8+ T cells at the infection
site counteract the repelling action of CXCL12 (Beider et al., 2003) in contrast to the opposite effect
elicited by CXCL12 in the TME as discussed earlier.

Mechanism (O1-M6) The PD-1 mediated control of immune responses depends on interactions between
PD-1 on CD8+ T cells and PD-L1 in tissues (Nirschl and Drake, 2013), inducing CD8+ T cell motility
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paralysis via PD-1:PD-L1 stable bonds (Zinselmeyer et al., 2013; Schietinger and Greenberg, 2014; Stein
et al., 2016). We introduce the “paralysis” mechanism (O1-M6) into the context of our studies by discussing
systematically the following specific questions,

(Q.1) “What triggers expression of PD-1 receptors on CD8+ T cells, and why is the expression triggered in
the first place?”

(Q.2) “Why are PD-1 receptors over-expressed in larger quantities on anti-tumor CD8+ T cells and not on
anti-influenza CD8+ T cells co-localized within the same infected lung?”

(Q.3) “Why are anti-VACV CD8+ T cells not sequestered in the infected lung when the host is distantly
co-infected with both infections, influenza A and VACV infections (in the absence of tumors)?”

To address (Q.1), we follow Simon and Labarriere (2017) who reviewed results highlighting the
ambiguous role of PD-1 in defining efficient or inefficient adaptive immune response. Initially, PD-1
transient expression on native T cells is induced immediately upon TCR activation, that is, the number of
PD-1 receptors can be regarded as a biomarker of activated and not exhausted CD8+ T cells.

The level of PD-1 receptors decreases in the absence of TCR signaling but is maintained upon chronic
activation with a persistent epitope target such as in chronic viral infections and in cancer (Wherry et al.,
2007; Brown et al., 2010; Pauken and Wherry, 2015b,a). Thus, the number of PD-1 receptors can also
be regarded as a biomarker of exhausted T cells (Simon and Labarriere, 2017). Importantly, transient
expressions of PD-1 and PD-L1 is viewed as a window of opportunity in the combined radiation (RT) and
anti-PD-1:PD-L1 therapies (Kosinsky et al., 2018).

The discussed ambiguous role of PD-1, which can be viewed either as a biomarker of activated or
exhausted CD8+ T cells depending on the inflammation context, can be explained as follows.

First, although the central immune tolerance mechanism results in the removal of most of the auto-
or self-reactive T cells during thymic selection, a fraction of self-reactive lymphocytes escapes to the
periphery and poses the threat of autoimmunity. Moreover, “it is now understood that the T cell repertoire
is in fact broadly self-reactive, even self-centered” (Hogquist and Jameson, 2014; Grossman and Paul,
2015; Richards et al., 2016).The strength with which a T cell reacts to self ligands and the environmental
context in which this reaction occurs influence almost every aspect of T cell biology, from development to
differentiation to effector function (Hogquist and Jameson, 2014; Grossman and Paul, 2015).

The immune system has evolved various mechanisms to constrain autoreactive T cells and maintain
peripheral tolerance (Grossman and Paul, 2001, 2015), including the constitutive expression of PD-L1
in large quantities in various tissues (e.g., lungs, pancreatic islets, etc.), and T cell anergy, deletion,
and suppression by regulatory T cells (Sakaguchi et al., 2008; Fife et al., 2009; Francisco et al., 2010;
Schietinger and Greenberg, 2014; Bardhan et al., 2016).

Second, although T cells endow their host with a defense that favors pathogen clearance, this efficiency
sometimes gives rise to intolerable immunopathology, especially when a pathogen transitions into a state of
persistence. For this reason, the immune system is equipped with dampening mechanisms that induce T cell
exhaustion via PD-1 and PD-L1 immune regulators (Zinselmeyer et al., 2013; Pauken and Wherry, 2015b;
Bardhan et al., 2016). This means that the activated T cells must be attenuated irrespective of whether
invaders are eliminated or persist. This is because, quite often, persisting microorganisms may cause less
tissue damage than the associated immunopathology as a result of continued lymphocyte cytotoxicity
(Speiser et al., 2016).
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Overall, this means that the immune system prefers to put infection that cannot be eradicated rapidly into
a chronic state which should produce less damage to the body than the extended exposition of the body to
aggressive CD8+ T cell response (Grossman and Paul, 1992, 2015).

(O2) Disruption of anti-tumor responses is not due to tumor-induced immune
suppression of viral clearance or the inability of the immune system to respond to
concomitant challenges.

The observation (Kohlhapp et al., 2016) that cancer does not significantly suppress the natural anti-viral
response can be explained by similar arguments used to introduce the mechanisms (O1-M1) - (O1-M6).
These suggest that much weaker inflammation in the tumor site compared with much stronger inflammation
in the infected lung may not be enough to force the anti-influenza CD8+ T cells (arrested in the lung as
discussed earlier) to egress the lung. The observation (Kohlhapp et al., 2016) that influenza infection did
not alter the natural clearance of the VACV or the proportion of VACV-tetramer+ CD8+ T cells at the
site of influenza infection can also be explained by the local anti-VACV CD8+ T cells Ag-induced arrest
required to kill VACV-infected cells as discussed earlier.

(O3) Therapeutic blockade of PD-1 results in reversal of infection-mediated anti-tumor
response disruption.

Recall that PD-L1 promotes motility paralysis (Zinselmeyer et al., 2013; Schietinger and Greenberg,
2014; Stein et al., 2016). In other words, the bond PD-1:PD-L1 mediates locking T cells into a state of
prolonged motility paralysis by localizing to the environment with abundant PD-L1 expression on stromal
cells as discussed earlier, termed “T cell motility paralysis” in (Zinselmeyer et al., 2013; Schietinger and
Greenberg, 2014).

Because the bond PD-1:PD-L1 is formed dynamically due to interchanging binding and unbinding
processes, blockade of PD-1 shifts the dynamic equilibrium towards dissociation of PD-1:PD-L1 bond,
leading to the rapid recovering (about 30 min.) of T cell motility, signaling, and cytokine production
(Zinselmeyer et al., 2013; Oelkrug and Ramage, 2014; Pauken et al., 2016). The corresponding details are
summarized in Table SI-1.1 of Sect. SI-1.4.

Reactivated anti-tumor CD8+ T cells then detach from local PD-L1 anchors and start moving with lymph
outside of the infected lung and may ultimately return back to the tumor site (Calzascia et al., 2005) with
the blood flow, following similar trafficking routes and mechanisms as discussed in (Poleszczuk et al.,
2016).

SI-1.4 Reactivation of exhausted effector cells

Because the PD-1 blockade reactivates exhausted anti-tumor CD8+ T cells, sequestered in the infected
lung and return, possibly, them back to the TME (Kohlhapp et al., 2016), we briefly summarize relevant
known results on the exhausted T cell reactivation (Table SI-1.1). Our summary is based on the recent
reports (Zinselmeyer et al., 2013; Pauken et al., 2016; Wang et al., 2017).

Several gene signatures based on the analyses of populations of dysfunctional CD8+ T cells from cancer
and chronic viral infections have been published and reviewed by Wang et al. (2017). These signatures
confirm great similarity between virus- and cancer-associated CD8+ T cell dysfunction. Due to these
published gene signature comparisons, we believe that Table SI-1.1 further supports mechanisms formulated
in the main text.
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Table SI-1.1. A brief summary of TEX reactivation after PD-1 blockade.

Reactivation Effect Mechanisms
(E.1) reactivation of TEFF functions in TEX:
(E.1.1) improved cell cycle and proliferation • increased transcription of cell division genes

• increased levels of Ki-67

(E.1.2) improved response to antigen • elevated co-production of INFγ and TNFα

(E.1.3) improved motility and chemotaxis • upregulated expression of cxcl9 and cxcr3

(E.1.4) improved killing capability • increased levels of granulocytes

(E.1.5) suppression of PD-1 expression • upregulated expression of prdm1 encoding Blimp-1

(E.1.6) protection against exhaustion • upregulated expression of il7r
• OCR state specific regulation of ctla4

(E.2) reactivation of TMEM functions in TEX:
(E.2.1) negative regulation of apoptosis • increased levels of phospho-STAT5

(E.2.2) improved adhesion • unknown

(E.2.3) improved regulation of activation • elevated production of INFγ

(E.3) transient reinvigoration of TEX (peaked in 3-weeks)

transient and Ag-dose dependent expression of prdm1 encoding • small and large amounts of Ag repress prdm1
Blimp-1 • medium amounts of Ag activate prdm1

(E.4) signaling and immunometabolic effects:
(E.4.1) signaling • upregulation of genes encoding NF-κB and IRFs

(E.4.2) lipid metabolism • upregulation of genes encoding PPARγ and RXRα
• downregulation of srebp1

(E.4.3) de-novo cholesterol pathway, and glycolysis • unknown
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SI-2 A CORE MATHEMATICAL MODEL OF PD-1 EXPRESSION

SI-2.1 The model equations

Our core mathematical model of PD-1 expression on the surface of a CD8+ T cell describes normal and
aberrant dynamics of interactions between four immunobiochemical entities, Bcl-6 (C), PD-1 (P ), IRF4
(I), and Blimp-1 (B),

dC

dt︸︷︷︸
C=[Bcl6]

=

(
acU

nc

Anc
c + Unc

)
︸ ︷︷ ︸

TCR dep. act.

(
M rc

c

M rc
c + Brc + Irc + Crc

)
︸ ︷︷ ︸

Blimp1/IRF4/Bcl6 dep. repr.

− µcC,︸︷︷︸
Bcl6 deg.

(SI-2.1a)

dP

dt︸︷︷︸
P=[PD1]

=

σp +
apU

np

A
np
p + Unp︸ ︷︷ ︸

TCR dep. act.


(

M
rp
p

M
rp
p + Brp

)
︸ ︷︷ ︸
Blimp1 dep. repr.

− µpP,︸︷︷︸
PD1 deg.

(SI-2.1b)

dI

dt︸︷︷︸
I=[IRF4]

=

σi +
aiU

ni

Ani
i + Uni︸ ︷︷ ︸

TCR dep. act.

+
kiB

mi

Kmi
i + Bmi︸ ︷︷ ︸

Blimp1 dep. act.

+
qiI

si

Qsi
i + Isi︸ ︷︷ ︸

IRF4 dep. act.

ΦL − µiI,︸︷︷︸
IRF4 deg.

(SI-2.1c)

dB

dt︸︷︷︸
B=[Blimp1]

=

 abU
nb

Anb
b + Unb︸ ︷︷ ︸

TCR dep. act.

+
kbI

mb

Kmb
b + Imb︸ ︷︷ ︸

IRF4 dep. act.


(

M rb
b

M rb
b + Crb

)
︸ ︷︷ ︸

Bcl6 dep. repr.

− µbB.︸︷︷︸
Blimp1 deg.

(SI-2.1d)

Here, for the sake of compactness in the equation term explanation, we use the following abbreviations,
“TCR dep. act.” for TCR-dependent activation, “Blimp-1/IRF4/Bcl-6” for Blimp-1/IRF4/Bcl-6-dependent
repression, and so on.

The model structure corresponds to the circuit topology depicted in Fig. 2 of the main text with a few
simplifications resulting from lumping some species, (i) NFATc1 and PD-1 becoming the species P , and
(ii) NF-κB and IRF4 becoming the species I . We also omit Erk-dependent degradation of Bcl-6 because it
is in turn attenuated by Bcl-6 itself.

The input U := U(α, κ, P ) to the model (SI-2.1) is described by the scalar function u(α, κ) defined in
(SI-3.11),

U(α, κ, P ) = u(α, κ)φL(P ), (SI-2.2a)

φL(P ) =
Hp

Hp + LP
. (SI-2.2b)

Here, the inhibitory regulatory factor φL(P ) corresponds to the co-localization of PD-1:PD-L1 complexes
around the immunologic Ag-TCR synapses that hinder the TCR activity as discussed in Sec. SI-1.2. An
external environment parameter L models a fraction of PD-1 receptors bound with PD-L1. Parameters α
and κ are scaled Ag level and scaled koff , the dissociation constant for the Ag-TLR bond, respectively.
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We use a Michaelis-Menton saturation functional dependence in the expression (SI-2.2b) to describe a
2D-sliding diffusion of PD-1 receptors on the surface of a T cell (without any switch-like reaction sharp
transitions) as a major process contributing to the TCR down regulation effect (Sect. SI-1.2).

Next, the factor ΦL := ΦL(P ) in the equation (SI-2.1c) describes a net negative feedback effect caused
by the PD-1:PD-L1 interaction (Sec. SI-1.2),

ΦL(P ) =
HhL

L

HhL
L + (LP )hL

. (SI-2.3)

Recall that the active complex formed between PD-1 and PD-L1 suppresses the NF-κB pathway, while the
NF-κB pathway activates IRF4 (Fig. 2).

We also use generic Hill functions in (SI-2.2b) and (SI-2.3) following the Hill-function approximation
suggested for T cell exhaustion in (Johnson et al., 2011).

In order to capture effects caused by self (tumor) and non-self (infection) interactions, including significant
differences in the magnitude of infection and amount of tumor antigens, we implement the following
relationships to mathematically implement the self- / non-self specificity,

αT < αI, (SI-2.4a)

κT > κI. (SI-2.4b)

Here, subscript labels “T” and “I” correspond to tumor and infection, respectively.

Based on our immunobiochemical reconstruction and following (Warmflash and Dinner, 2009), we make
explicitly additional choices to rank TCR-mediated activation parameters as follows,

Ac ≤ Ap ≤ Ai ≤ Ab, (SI-2.5a)

ac ≤ ap ≤ ai ≤ ab. (SI-2.5b)

Based on the developed immunobiochemical reconstruction, the inequality choices (SI-2.5a) ensure that
the genes encoding Bcl-6 and PD-1 are activated at lower antigen levels than the genes encoding IRF4 and
Blimp-1, whereas the latter ensures that the switch towards the suppression of PD-1 transcription is biased
towards the CD8+ T cell, when both IRF4 and Blimp-1 are expressed at high antigen levels.

To account for the abundance of the lumped TNFα/IFNγ species, we have replaced the rate constant σp
in the equation (SI-2.1b) by the reaction rate expression,

σ̃p = σp +
kTT

nT

KnT
T + TnT

. (SI-2.6)

Here, T corresponds to TNFα, kT = 0.5, kT = 1, and nT = 2. The values of the new parameters are
selected in the range of the corresponding parameter values from Table SI-2.1.

SI-2.2 The model parameters

Reference parameter values used in our modeling studies are listed in Table SI-2.1. We have to mention
explicitly that the parameter values have not been fitted to any data from (Kohlhapp et al., 2016), and have
been selected as follows.
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Table SI-2.1. PD-1 expression model parameter values.

Parameters Values Comments

σi 0.30 IRF4 constituent synthesis rate
σp 0.10 PD-1 immune central tolerance const. synth. rate
ac = ap < ai < ab 0.75 = 0.75 < 75.0 < 100.00 genetic switch thresholds
Ac < Ap < Ai < Ab 0.01 < 0.10 < 1.00 < 10.00 genetic switch thresholds
nc = np 3 species: Bcl-6 and PD-1
nb = ni 2 species: Blimp-1 and IRF4
kb 0− 25 species: IRF4
ki = qi 7.50 species: Blimp-1 and IRF4
Kb = Ki = Qi 1.00 species: Blimp-1 and IRF4
mb = mi = si 2 species: Blimp-1 and IRF4
Mb = Mc = Mp 10.00 species: Blimp-1, Bcl-6 and PD-1
Hp = HL 0.1 species: PD-1 and PD-L1
rb = rc 2 species: Blimp-1 and Bcl-6
rp = hL 4 species: PD-1 (p) and PD-L1 (L)
µc = µp 0.10 species: Bcl-6 and PD-1
µb = µi 1.00 species: Blimp-1 and IRF4
L 0 - 1 species: fraction of PD-1 bound to PD-L1

First, we used dimensionless (scaled) parameter values of the same order of magnitude for the
corresponding subsets of parameters as those which were used in (Sciammas et al., 2011; Martinez
et al., 2012; Lever et al., 2016).

In our selection of the reference parameter values (Table SI-2.1), we also analyzed and followed a number
of insightful discussions of a very challenging and complex problem of selecting relevant parameter values
for biological and especially immunological models, presented in a number of published works (Heinrich
and Rapoport, 2005; Warmflash and Dinner, 2009; Martinez et al., 2012; Lever et al., 2014; Galvez et al.,
2016), including conceptual views (Gunawardena, 2014; Eftimie et al., 2016) as well as discussed general
issues with experimental measurements (De Boer and Perelson, 2013; Eftimie et al., 2016).

Second, the parameter values used from (Sciammas et al., 2011; Lever et al., 2016) can be justified for our
modeling studies by employing the following IFFL function argument. Indeed, the incoherent feedforward
loops cannot exert their biphasic function with any arbitrary parameter values (Kim et al., 2008). The
parameter values taken from (Sciammas et al., 2011; Lever et al., 2016) and used in the model (SI-2.1)
correspond to the dose-dependent biphasic behaviors as defined and studied in (Kim et al., 2008), and also
observed experimentally in the cited literature. In other words, the used parameter values are sufficient to
instill the IFFL function.

Finally, the type of modeling carried out in our work can be characterized as phenotypic modeling
(Warmflash and Dinner, 2009; Lever et al., 2014; Gunawardena, 2014). Recall that the objective of the
phenotypic modeling is to capture the function of a biological system, based on the available and well-
established features of the regulatory network under study as also explicitly stated in (Sciammas et al.,
2011) which justified the selection of generic Hill functions in their model tailored to the GRN topology. In
this work, we implemented a similar approach.
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SI-3 THE KPL-IFFL MODEL

For the sake of consistency in the integration of the model (Lever et al., 2016) with our model describing
the core circuit, we briefly derive functional relationships needed for the models’ integration, adapting the
discussion in (Lever et al., 2016).

Specifically, our objective here will be to derive the function u(α, κ), which we define as a non-
dimensionalized input P in (SI-3.10b), and for which the final expression is given in (SI-3.11). The
scaled function u(α, κ) depends on two state variables α and κ, the scaled level of Ag and the scaled value
of the off-rate constant koff , respectively.

A mathematical model (Lever et al., 2016) is

dL

dt
= −konLR + koffCT, (SI-3.1a)

dR

dt
= −konLR + koffCT, (SI-3.1b)

dC0

dt
= konLR − (koff + kp)C0, (SI-3.1c)

dC1

dt
= kpC0 − (koff + ki)C1, (SI-3.1d)

dC2

dt
= kiC1 − koffC2, (SI-3.1e)

dY

dt
= γy+ (YT − Y ) − γy−Y + λC1 (YT − Y ) , (SI-3.1f)

dP

dt
= γp+ (PT − P ) − γp−P + δY (PT − P ) − µC1P. (SI-3.1g)

The state variables and parameters of the model (SI-3.1) are defined in (Lever et al., 2016). Parameters
important for our derivation are: kon and koff are on- and off-rate constants, kp is the kinetic proofreading
rate constant, ki is the kinetic rate constant for transforming of the active complex C1 into the inactive
complex C2. We will also need CT, the total number of all ligand-receptor complexes,

CT = C0 + C1 + C2. (SI-3.2)

Here, CT does not correspond to any conserved moiety and, instead, changes in time.

The model (SI-3.1) has the following first integrals, also termed moiety conservation relationships,

LT = L + CT. (SI-3.3a)

RT = R + CT, (SI-3.3b)

Due to the relationships (SI-3.3b) and (SI-3.3a), the corresponding first two equations (SI-3.1a) and
(SI-3.1b) in the model (SI-3.1) become redundant and are omitted from further analysis.
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Setting the model linearly independent equations (SI-3.1c) - (SI-3.1g) at steady state, we can obtain the
following algebraic relationships,

C0 =

(
kon

koff + kp

)
× LR, (SI-3.4a)

C1 =

(
kp

koff + ki

)
× C0, (SI-3.4b)

C2 =

(
ki

koff

)
× C1, (SI-3.4c)

Y =

(
1 +

(
λ/γy+

)
C1

1 +
(
γy−/γ

y
+

)
+
(
λ/γy+

)
C1

)
× YT, (SI-3.4d)

P =

(
1 +

(
δ/γp+

)
Y

1 +
(
γp−/γ

p
+

)
+
(
µ/γp+

)
C1 +

(
δ/γp+

)
Y

)
× PT. (SI-3.4e)

Next, we eliminate the product LR from (SI-3.4a) by using (SI-3.4a) - (SI-3.4c) in (SI-3.2),

CT =

((
kon

koff + kp

)
+

(
kp

koff + ki

)(
kon

koff + kp

)
+

(
ki

koff

)(
kp

koff + ki

)(
kon

koff + kp

))
LR.

(SI-3.5)
After simple algebraic manipulations, we obtain from (SI-3.5) that

LR = KdCT, Kd =
koff

kon
. (SI-3.6)

Using (SI-3.6) in (SI-3.4a), and then (SI-3.4a) in (SI-3.4b), followed by using (SI-3.4b) in (SI-3.4c), we
obtain

C0 =

(
koff

koff + kp

)
CT, (SI-3.7a)

C1 =

(
kp

koff + ki

)(
koff

koff + kp

)
CT, (SI-3.7b)

C2 =

(
ki

koff

)(
kp

koff + ki

)(
koff

koff + kp

)
CT. (SI-3.7c)

Note that CT is still unknown in (SI-3.7). To compute CT, we use an alternative expression for the
product LR.

Indeed, we can obtain from (SI-3.3a) and (SI-3.3b) that L = LT − CT andR = RT − CT, respectively.
Now, using LR = (LT − CT) (RT − CT) in (SI-3.6), we come to a closed quadratic equation with
respect to CT,

(LT − CT) (RT − CT) = KdCT. (SI-3.8)
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Solving the quadratic equation (SI-3.8) with respect to CT, we obtain two solutions, only one of which
corresponds to the biologically meaningful condition, CT = 0 at LT = 0,

CT =
1

2

(
RT + LT + Kd −

√
(RT + LT + Kd)2 − 4RTLT

)
. (SI-3.9)

The solution (SI-3.9) also corresponds to the stable equilibrium in the system of linearly independent
equations (SI-3.1c) - (SI-3.1g).

It is convenient to nondimensionalize the equilibrium solution of (SI-3.1) given by the expressions
(SI-3.4a) - (SI-3.4e), and (SI-3.9) by scaling all state variables and parameters as follows,

cT =
CT

RT
, ck =

Ck

RT
, k = 0, 1, 2, (SI-3.10a)

y =
Y

YT
, u =

P

PT
, (SI-3.10b)

Kp =
1

RT

(
kp

kon

)
, Ki =

1

RT

(
ki

kon

)
, (SI-3.10c)

Γy =
γy−
γy+
, Γp =

γp−
γp+
, (SI-3.10d)

Λ = λ
RT

γy+
, ∆ = δ

YT

γp+
, Θ = µ

RT

γp+
, (SI-3.10e)

α =
LT

RT
, κ =

Kd

RT
. (SI-3.10f)

We obtain from the rescaled (SI-3.4e) that

u(α, κ) =
1 + ∆ y(α, κ)

1 + Γp + Θv(κ) cT(α, κ) + ∆ y(α, κ)
. (SI-3.11)

In (SI-3.11), the functions c1(α) and y(α) are obtained from the corresponding expressions (SI-3.4b) and
(SI-3.4d) rescaled as discussed earlier,

y(α, κ) =
1 + Λv(κ) cT(α, κ)

1 + Γy + Λv(κ) cT(α, κ)
, (SI-3.12a)

cT(α, κ) =
1

2

(
1 + α + κ −

√
(1 + α + κ)2 − 4α

)
, (SI-3.12b)

v(κ) =

(
Kp

κ + Ki

)(
κ

κ + Kp

)
. (SI-3.12c)

Reference values of parameters used in the expressions (SI-3.11) - (SI-3.12) are listed in Table SI-3.1.
These values correspond to the values used to compute Fig. 3 in (Lever et al., 2016).
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Table SI-3.1. KPL-IFFL model parameter values.

№ Parameter Value

1. Ki 10−3

2. Kp 10−2

3. Γy 5 × 102

4. Γp 5 × 102

5. ∆ 5 × 103

6. Θ 5 × 104

7. Λ 104

8. α 10−4 − 104

9. κ 10−4 − 102
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SI-4 ANALYSIS OF SPARSE VERSUS DENSE EXPERIMENTAL DATA

The main limitation of experimental data (Kohlhapp et al., 2016) is that the data is sparse. Yet, in spite
of this limitation, by focusing on the phenotypes (A) and (B) schematically depicted in Fig. 8, our model
semi-quantitatively fits a body of experimental data both discussed in the current literature and in (Kohlhapp
et al., 2016) with very a small number of variables and parameters.

The topic of limitations imposed by the sparsity of experimental data has been widely discussed in
the biological and especially immunological literature in the context of the applicability of such data in
mathematical modeling (De Boer and Perelson, 2013; François et al., 2013; Gunawardena, 2014; Eftimie
et al., 2016) to mention just a few references.

Small-scale models are highly interpretative (James et al., 2013; Ledzewicz and Schattler, 2017) and, here,
we agree with the following citation: “Simplified models are sometimes more predictive than elaborate
ones when data are sparse and have the added benefit of transparency” (François et al., 2013). An added
benefit of smaller and more phenomenological models is that they have a small number of parameters, for
which one may be able to find rough estimates from the literature. In contrast, large scale models have
many parameters, most of which may not be available from the literature and, instead, should be fitted
to data. Such models may be more powerful in accurate predictions at the (possible) expense of loosing
interpretability (James et al., 2013).
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SI-5 MATHEMATICAL AND NUMERICAL METHODS

The steady-state solutions of the models developed in this work, the solution stability (Sontag, 2013),
as well as the parameter continuation of the steady-state solutions (Kuznetsov, 2013) have been studied
numerically (Khibnik et al., 1993), using the command-line functionality of matcont6p10, a Matlab®-
based Continuation Toolbox (Dhooge et al., 2008). MATLAB® Parallel Computing Toolbox was employed
whenever possible. Finally, the color maps were generated using varycolor.m, a Matlab®-based
function.
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