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A Electric field of a propagating Gaussian laser pulse
In order to calculate variations of laser intensity and undulator frequency in the out-of-focus geometry during
the electron-laser interaction, we derive in this section an expression for the electric field distribution of a
focusing laser pulse with Gaussian transverse envelope. The obtained representation of the electric field is
evaluated along the electron trajectory and in the region surrounding it in order to evaluate variations of laser
intensity and undulator frequency in the course of interaction. Since variations occur due to misalignment of
the optical setup, resulting in nonideal orientation of pulse-front tilt and plane of optimum compression or
an offset in interaction angle, the calculated variations can be compared to the limits for optical free-electron
laser operation, eq. (7), which gives limits for misalignments.

By using the Rayleigh-Sommerfeld diffraction integral we obtain an analytic expression of the pulse electric
field which is valid even in the proximity of the laser focus in contrast to a Fraunhofer diffraction ansatz. A
Gaussian laser pulse with pulse-front tilt in the focus is in frequency domain defined as

Ê(z = 0, y,Ω) = ε(Ω− Ω0)e
− y2

w2
0,yz ei

(Ω−Ω0)
c y tanαtilt ,

where the transverse profile exp[−y2/w2
0,yz] is Gaussian with a width w0,yz and where its spectrum ε(Ω−Ω0) =

exp[−(Ω− Ω0)2τ2
0 /4] is a Gaussian with Ω0 being the central laser frequency and τ0 the laser pulse duration.

The laser pulse duration τ0 is connected to the full duration at half maximum τFWHM,I of its intensity profile
by

τ0 = τFWHM,I√
2 ln 2

.

Writing the phase term in the above form directly connects pulse-front tilt and angular dispersion since
tanαtilt(Ω−Ω0)/c is the y-component of the wave vector for a frequency Ω (cf. (17)). The pulse propagation
direction is along z.

Propagation of the pulse with the Rayleigh-Sommerfeld diffraction integral [51],[106] yields the field in a
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distance z from the focus
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where wyz(z)2 = w2
0,yz[1 + (z/zR,yz)2] is the width of the pulse increasing with distance from the focus,

Ryz(z) = z[1 + (zR,yz/z)2] is the radius of phase-front curvature and zR,yz = πw2
0,yz/λLaser the Rayleigh

length. Angular dispersion
AD = θ′ = tan(αtilt)/Ω0

causes the propagating pulse to develop spatial dispersion (SD), i.e. a separation of frequencies in its transverse
cross-sectional plane. Defining the center of a frequency’s spatial distribution as y0(z,Ω), spatial dispersion is
defined as the linear contribution to its expansion

y0(z,Ω) = SD(Ω− Ω0) , where SD = dy0

dΩ

∣∣∣∣
Ω=Ω0

.

For a Gaussian pulse y0 and SD can be identified from the above relation for the electric field as

y0(z,Ω) = −z tanαtilt

Ω0
(Ω− Ω0) and SD(z) = −zAD ,

showing that the centers of all spatial frequency distributions disperse during propagation.
In addition to the spatial separation of frequencies, they also separate temporally, i. e. the pulse develops

group delay dispersion (GDD) during propagation. GDD causes an increasing phase difference between
frequencies with an elongation of the pulse as a result. Terms proportional to (Ω−Ω0)2 in the phase ϕ of eq.
(46) contribute to pulse elongation, since

GDD = d2ϕ

dΩ2

∣∣∣∣
Ω=Ω0

.

The major contribution to the elongation of a Gaussian pulse arises from a single phase term in (46), for which
we define

GDD(z) = −zΩ0

c
AD2 = −z tan2 αtilt

Ω0c
.

Using these definitions, we calculate the electric field of the Gaussian laser pulse in time-domain by a
Fourier transform

E(z, y, t) = 1
2π

∫
Ê(z, y,Ω)eiΩtdΩ .

In the calculation we neglect the phase term proportional to (Ω−Ω0)3/Ω3
0, since it is a small contribution to

the phase of laser pulses with several ten laser periods which we consider here. We obtain for the time domain
electric field of the focusing Gaussian laser pulse
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√
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where
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and at t = 0 the pulse is located at position z = ∆f . From the above equation for the laser field some of
the effects of dispersion are directly visible. The pulse width w0,yz increases during propagation due to SD to
the value given by Wyz and the pulse duration τ0 increases due to SD and GDD to T . Pulse-front tilt and
curvature of the pulse-front due to focusing are included in L̃.

In section 3.2 we gave an expression for the total undulator frequency variation in the out-of-focus setup at
the end of the interaction of electrons and laser pulse. It is derived by expanding the instantaneous undulator
frequency from the middle of the interaction (t = 0) towards the end tend = Lint/2β0c. The instantaneous
undulator frequency Ω̃(t) itself is given by the time derivative of the phase ϕ̃(z, y, t) = ArgE(z, y, t) of the
complex electric field evaluated along the electron trajectory (19)

Ω̃(t) = d
dt ϕ̃(β0ct cosφ+ ∆f,−β0ct sinφ, t) .

Until the end of the interaction it deviates from its undisturbed value at z = ∆f by

∆Ω̃ = Ω̃(tend)− Ω̃(0)
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,

In the order from left to right these terms originate from phase-front curvature, Gouy phase shift and the last
two from group delay dispersion. For typical TWTS OFELs where the laser width wyz = Lint sinφ is large
compared to the electron bunch width 2σb, in order to achieve long interaction distances, the Gouy term is
negligible. The same is possible for the dispersion terms provided dispersion compensation, e. g. by utilizing
the plane of optimum compression, is applied. During the whole interaction ranging from [−tend, tend] the
normalized total change in undulator frequency is

∆Ω̃
Ω̃

= − Lint

R(∆f)
sin2 φ

(1− β cosφ) + cosφ
4π2 sin2 φ(1− β cosφ)

λ2
Laser
L2

int
. (48)

B Zemax macro calculating dispersion from ray path length differ-
ences

Our analytical calculations for pulse-front tilt and plane of optimum compression orientation are complemented
by a Zemax calculation. To obtain pulse-front tilt angle and plane of optimum compression angle we wrote a
Zemax macro that calculates time delay (TD) and group delay dispersion (GDD) from the optical path lengths
for different frequencies in the setup according to eq. (44). Pulse front and plane of optimum compression
orientations are found by sampling time delay and group delay dispersion along their respective planes. Along
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Figure 11: Optical path lengths (OPTHi) of the wavelengths λLaser = λ1, λ2 and λ3 need to be corrected for
the calculation of time delay and group delay dispersion at the position P1 on a target plane. In this particular
example, the target plane is the pulse front which encloses the angle αtilt with the phase front of the central
laser wave.

the pulse front time delay is constant and along the plane of optimum compression group delay dispersion is
constant.

The definitions of TD and GDD require to calculate derivatives of the optical phase at a certain point.
These derivatives are calculated from the optical phases of three different waves at this point of interest, where
the three plane waves with wavelengths λ2 < λ1 = λLaser < λ3 start with equal phase at some entrance plane
before the first optical element of the setup. Their phase φi at the point of interest is calculated from the
distance DISTi which is covered by their phase front during propagation from the entrance plane to the point
of interest in the target plane, φi = (2π/λi)DISTi, as it is sketched in fig. 11.

When using optical path lengths provided by Zemax to calculate TD and GDD, one needs to take into
account that these path lengths OPTHi are given for every wavelength until it stops at the target plane.
Therefore, the path lengths OPTHi need to be corrected since they are not equal to DISTi if there are
dispersive optical elements in the setup.

Accordingly, a compensation calculation is part of the script to obtain correct values for TD and GDD.
This compensation calculations requires information about the propagation direction (±z) of the pulse at the
final plane which is an input parameter of the script. This script is loosely based on the script provided in Ref.
[107]. Note, the variable bandw in the script is not meant to be the laser bandwidth. It rather specifies the range
between the wavelengths λ2 and λ3 which needs to be small since the error of the derivative approximation is
proportional to it.

!*******************************************************************************
! Zemax macro to compute the angular dispersion and
! group delay dispersion of a laser pulse.
!
!
! Klaus Steiniger, 2016
! Last review 28 Jun 2017
!

!*******************************************************************************
! Constants and input parameter
!
pi = 4*ATAN(1)
cspeed = 0.299792458 # [cspeed] = 1E9 * m / s = mm / ps

INPUT "Central Wavelength of laser in micrometer", lambda0
PRINT "Central Laser wavelength [mum] = ", lambda0 #[lambda] = 1E-6 m

bandw = 0.001*lambda0
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nlambda = 3 #odd number!
dlambda = bandw/(nlambda-1)

INPUT "Surface at which to calculate dispersion", NSURF
PRINT "NSUR = ", NSURF

INPUT "Propagation direction at plane of measurement? (z = 1, -z = -1)", coord_sys

PRINT ""

SETSYSTEMPROPERTY 201, nlambda

!*******************************************************************************
! Set wavelengths for dispersion calculation
!
SETSYSTEMPROPERTY 202, 1, lambda0
VEC1(1) = lambda0 # Vector of the wavelengths which are

# propagated through the setup
# [VEC1] = 1E-6 m

K=-INTE(.5*nlambda)

! Set wavelength smaller than central
!
FOR J, 2, INTE(.5*nlambda) + 1, 1

lambda = lambda0 + K*dlambda
SETSYSTEMPROPERTY 202, J, lambda
VEC1(J) = lambda
K = K+1

NEXT

K = K+1 # leave out center frequency in frequency calculation

! Set wavelength larger than central
!
FOR J, INTE(.5*nlambda) + 2, nlambda, 1

lambda = lambda0 + K*dlambda
SETSYSTEMPROPERTY 202, J, lambda
VEC1(J) = lambda
K = K+1

NEXT

!*******************************************************************************
! Calculate Dispersions
!
PRINT ""

PRINT "Entrance pupil coordinate py, y-coordinate at plane[mm], TD[ps], GDD[fs^2]"

transv_samples = 3 # Refactor to an input value if necessary

!*** Produce container ***
DECLARE PHASES, DOUBLE, 1, 1000 # container for optical phase
DECLARE TD, DOUBLE, 1, 1000 # container for time delay
DECLARE GDD, DOUBLE, 1, 1000 # container for group delay dispersion

!*** Sample over multiple ray starting positions across the entrance pupil ***
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!***
For L, 1, transv_samples, 1

!*** Equally distribute the starting positions ***
py = -1 + (L-1)*2/(transv_samples - 1)

FOR J, 1, nlambda, 1
RAYTRACE 0, 0, 0, py, J
!-----------------------------------------------------------------------
! Calculate compensation of optical path length for rays of different
! frequency than the central frequency.
!
! For the calculation of dispersion, the optical path length
! of a ray must be measured until its phase-front overlaps with the
! point of dispersion measurement.
! That is, at the position where the central frequency ray hits the
! measurement plane in Zemax.
! Since Zemax calculates optical path lengths of rays until they hit
! the measurement plane, the optical path length of
! non-central-frequency rays needs to be corrected.
! Which is done in the following.
!
! Assumes that propagation is in vacuum (n=1)
! Sign of compensation depends on the propagation direction with
! respect to coord.-system in the measurement plane.
!
ypos = RAYY(NSURF)
IF (J==1) THEN plane_intercept_c = ypos
plane_intercept_difference = ypos - plane_intercept_c
opth_compensation = plane_intercept_difference * RAYM(NSURF)
path_length = OPTH(NSURF) - coord_sys*opth_compensation

# OPTH returns the path in millimeter
# [path_length] = 1E-3 m

PHASES(J) = 2*PI*path_length/VEC1(J)
# Phase from optical path along the ray
# VEC1 is wavelength in microns
# [PHASES] = 1E3

NEXT

dlambda = -lambda0*lambda0/(2*pi*cspeed) # [dlambda] = 1E-21 m s
ddlambda = -lambda0 * dlambda /(pi*cspeed) # [ddlambda] = 1E-36 m s**2

FOR J, 2, INTE(.5*nlambda) + 1, 1
h = VEC1(1)-VEC1(J) # [h] = 1E-6 m
!-----------------------------------------------------------------------
! optical phase derivatives with respect to frequency (TD and GDD)
!
dphase = (PHASES(nlambda+2-J)-PHASES(J))/2/h # [dphase] = 1E9 / m
ddphase = (PHASES(nlambda+2-J)-2*PHASES(1)+PHASES(J))/h/h

# [ddphase] = 1E15 / m**2
TD(J) = dphase*dlambda # [TD] = 1E-12 s = ps
GDD(J) = ddphase*dlambda*dlambda + dphase*ddlambda

# [GDD] = 1E-27 s**2
PRINT py, ", ", plane_intercept_c, ", ", TD(J), ", ", GDD(J)*1E3

NEXT
NEXT
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