
Corbett Moran

APPENDIX A REORDERING ALGORITHM

The reordering algorithm allows the user to compare an ordered set of qubits to the output of the quantum
computation. Such an algorithm is necessary as while internal to the quantum computer abstraction qubits
can be in arbitrary order grouped in arbitrary quantum registers, the user desires output in a specified order.
This section presents the details of this algorithm.

There are some requested configurations which would be impossible to provide without merging quantum
registers, and the first step of the reordering algorithm computes and merges quantum registers as needed
so that it may be possible to sort and return the desired configuration. For example, if the user requests the
order “q0”,“q1”,“q3”,“q4” and internally “q0” and “q4” are members of a single quantum register, and “q1”
and “q3” are members of another, these two quantum registers will have to be merged before sorting.

After the first step, we know we have a set of quantum registers that it is possible to reorder into the
requested order. However it could still be the case that we cannot return exactly the requested order. For
example if “q0”,“q1”,“q3”,“q4” were again requested but in this case internally all 5-qubits reside in the
same quantum register, it will be in general not possible to separate out “q2”. This is checked for and the
algorithm throws an exception if sorting is not possible at this stage.

Since we are only dealing with a small number of qubits (5) it is possible to use a simplistic sorting
algorithm for clarity; in this case bubble sort is chosen. With each step in the sorting algorithm, we must
also rearrange the state of the quantum register involved to correspond to the new order. Using a sorting
algorithm with simple well defined operations, bubble sort with its in place swaps, makes it easy to apply
the necessary matrix operations to the quantum register.

The bubble sort algorithm is simple to describe: it steps through a list comparing adjacent items and
swaps them as necessary, and repeats this stepping through until the list is sorted. It has a worst case
performance of O(n2). Since n = 5 in our case this is not a big penalty to pay for simplicity, and the nature
of quantum computation makes this the least of our worries were Quintuple attempted to be extended to
large n. The bubble sort algorithm is explicitly coded so that as we swap the qubits to match the desired
order, we also rearrange the state of the quantum register involved to correspond with the new order. This
is done by computing the permutation matrix corresponding to the rearranging prescribed by bubble sort,
and applying this permutation matrix to the state. This is done with every swap that bubble sort prescribes
of the qubit list, meaning that the state is in the corresponding order when the qubit list is sorted.

The final step of the reordering algorithm is to just return a single state representing the qubits of interest;
this is possible as was ensured in the previous step. For example if “q0”,“q1”,“q3”,“q4” are requested, and
“q2” resides in a separate quantum register than any of these qubits, then “q2” is ignored. The result is then
easily computed as the ordered tensor product the quantum registers solely containing ordered qubits of
interest. This result can be compared to the expected state supplied by the user.

The pseudo-code for the algorithm is included below:

Frontiers 1



Corbett Moran

Algorithm 1 Reordering
1: function REORDER(O: requested order)

Phase 1 - Merge quantum registers
Require: O is in increasing order

2: for q ∈ O do
3: for r ∈ R ← quantum registers do
4: rmin← smallest qubit in r
5: rmax← largest qubit in r
6: S ← all qubits between (inclusive) rmin and rmax
7: if q /∈ r & q ∈ S then
8: rq ← the register q belongs to
9: MERGE(rq, r)

Phase 2 - Sort quantum registers
Ensure: Every quantum register has qubits that are either all in O or none are in O

10: for r ∈ R ← quantum registers do
11: Q← qubits in r
12: if Q ∩O /∈ {∅,Q} then
13: return failure
14: if Q not ordered then
15: n← length(Q)

16: swapped← true
17: while swapped ≠ false do
18: swapped← false
19: for i = 0 to n − 1 do
20: if Q[i] > Q[i + 1] then
21: SWAP(r, i, i + 1)
22: swapped← true

Phase 3 - Create combined answer state
23: answer ← nil
24: for r ∈ R ← quantum registers do
25: Q← qubits in r
26: for q ∈ Q do
27: if Q ∈ O then
28: if answer = nil then
29: answer ← q
30: else
31: answer ← answer ⊗ q
32: return answer

2



Corbett Moran

Algorithm 2 Swap
1: procedure SWAP(r, i, j)
2: Q← qubits in r
3: state← state of r

Phase 1 - Permute the state
4: n← length(Q)

5: L← all possible states of n qubits in canonical ordering
6: permute← Idn×n ▷ n × n identity matrix
7: swapped← ∅

8: for c ∈ L do
9: newc← c

10: SWAPHELPER(newc, i, j)
11: if newc ≠ c then
12: iper ← index of c in L
13: jper ← index of newc in L
14: swap← {iper, jper}

15: if swap /∈ swapped then
16: swapped← swapped ∪ swap
17: SWAPHELPER(permute.rows, iper, jper)

18: state← permute ⋅ state

Phase 2 - Swap the qubits in the register
19: SWAPHELPER(Q, i, j)

Algorithm 3 Swap Helper
1: procedure SWAPHELPER(l, i, j)
2: tmp← l[i]
3: l[i]← l[j]
4: l[j]← tmp

Frontiers 3


	Appendix Reordering Algorithm

